On the reduction criterion for random quantum states

被引:7
|
作者
Jivulescu, Maria Anastasia [1 ]
Lupa, Nicolae [1 ]
Nechita, Ion [2 ]
机构
[1] Politehn Univ Timisoara, Dept Math, Timisoara 300006, Romania
[2] Univ Toulouse, UPS, IRSAMC, CNRS,Lab Phys Theor, F-31062 Toulouse, France
关键词
SEPARABILITY; EIGENVALUE; REGULARITY;
D O I
10.1063/1.4901548
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the reduction criterion for detecting entanglement of large dimensional bipartite quantum systems. We first obtain an explicit formula for the moments of a random quantum state to which the reduction criterion has been applied. We show that the empirical eigenvalue distribution of this random matrix converges strongly to a limit that we compute, in three different asymptotic regimes. We then employ tools from free probability theory to study the asymptotic positivity of the reduction operators. Finally, we compare the reduction criterion with other entanglement criteria, via thresholds. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Generalized reduction criterion for separability of quantum states
    Albeverio, S
    Chen, K
    Fei, SM
    PHYSICAL REVIEW A, 2003, 68 (06):
  • [2] RANDOM QUANTUM STATES
    WOOTTERS, WK
    FOUNDATIONS OF PHYSICS, 1990, 20 (11) : 1365 - 1378
  • [3] Extended reduction criterion and lattice states
    Benatti, Fabio
    Floreanini, Roberto
    Liguori, Alexandra M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (05)
  • [4] The criterion for quantum teleportation of fock states
    Zhang, JX
    Xie, CD
    Peng, K
    OPTICS COMMUNICATIONS, 2002, 207 (1-6) : 213 - 218
  • [5] On the Distinguishability of Random Quantum States
    Ashley Montanaro
    Communications in Mathematical Physics, 2007, 273 : 619 - 636
  • [6] Random private quantum states
    Christandl, Matthias
    Ferrara, Roberto
    Lancien, Cecilia
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 1784 - 1788
  • [7] Random Private Quantum States
    Christandl, Matthias
    Ferrara, Roberto
    Lancien, Cecilia
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (07) : 4621 - 4640
  • [8] Entanglement and random quantum states
    Znidaric, Marko
    LET'S FACE CHAOS THROUGH NONLINEAR DYNAMICS, 2008, 1076 : 301 - 310
  • [9] On the distinguishability of random quantum states
    Montanaro, Ashley
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (03) : 619 - 636
  • [10] ENTROPY OF RANDOM QUANTUM STATES
    JONES, KRW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (23): : L1247 - L1251