On the reduction criterion for random quantum states

被引:7
|
作者
Jivulescu, Maria Anastasia [1 ]
Lupa, Nicolae [1 ]
Nechita, Ion [2 ]
机构
[1] Politehn Univ Timisoara, Dept Math, Timisoara 300006, Romania
[2] Univ Toulouse, UPS, IRSAMC, CNRS,Lab Phys Theor, F-31062 Toulouse, France
关键词
SEPARABILITY; EIGENVALUE; REGULARITY;
D O I
10.1063/1.4901548
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the reduction criterion for detecting entanglement of large dimensional bipartite quantum systems. We first obtain an explicit formula for the moments of a random quantum state to which the reduction criterion has been applied. We show that the empirical eigenvalue distribution of this random matrix converges strongly to a limit that we compute, in three different asymptotic regimes. We then employ tools from free probability theory to study the asymptotic positivity of the reduction operators. Finally, we compare the reduction criterion with other entanglement criteria, via thresholds. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Entanglement in probability representation of quantum states and tomographic criterion of separability
    Man'ko, VI
    Marmo, G
    Sudarshan, ECG
    Zaccaria, F
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (02) : 172 - 177
  • [42] Generation of Pseudo-Random Quantum States on Actual Quantum Processors
    Cenedese, Gabriele
    Bondani, Maria
    Rosa, Dario
    Benenti, Giuliano
    ENTROPY, 2023, 25 (04)
  • [43] Characterizing the superposition of arbitrary random quantum states and a known quantum state
    Li, Bo
    Liang, Xiao-Bin
    Fei, Shao-Ming
    RESULTS IN PHYSICS, 2023, 49
  • [44] Entanglement features of random neural network quantum states
    Sun, Xiao-Qi
    Nebabu, Tamra
    Han, Xizhi
    Flynn, Michael O.
    Qi, Xiao-Liang
    PHYSICAL REVIEW B, 2022, 106 (11)
  • [45] Detecting entanglement of unknown quantum states with random measurements
    Szangolies, Jochen
    Kampermann, Hermann
    Bruss, Dagmar
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [46] Extreme statistics of complex random and quantum chaotic states
    Lakshminarayan, Arul
    Tomsovic, Steven
    Bohigas, Oriol
    Majumdar, Satya N.
    PHYSICAL REVIEW LETTERS, 2008, 100 (04)
  • [47] Quantum circuit for three-qubit random states
    Giraud, Olivier
    Znidaric, Marko
    Georgeot, Bertrand
    PHYSICAL REVIEW A, 2009, 80 (04):
  • [48] The joint distribution of the marginals of multipartite random quantum states
    Dartois, Stephane
    Lionni, Luca
    Nechita, Ion
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (03)
  • [49] Ensembles of physical states and random quantum circuits on graphs
    Hamma, Alioscia
    Santra, Siddhartha
    Zanardi, Paolo
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [50] Reduction of quantum phase fluctuations in intermediate states
    Verma, Amit
    Pathak, Anirban
    PHYSICS LETTERS A, 2009, 373 (16) : 1421 - 1428