Life cycle energy analysis of buildings: An overview

被引:896
|
作者
Ramesh, T. [1 ]
Prakash, Ravi [1 ]
Shukla, K. K. [2 ]
机构
[1] Motilal Nehru Natl Inst Technol, Dept Mech Engn, Allahabad, Uttar Pradesh, India
[2] Motilal Nehru Natl Inst Technol, Dept Civil Engn, Allahabad, Uttar Pradesh, India
关键词
Life cycle energy; Embodied energy; Operating energy; Life cycle assessment; Building; EMBODIED ENERGY; OFFICE BUILDINGS; CONSTRUCTION; HOUSES; CONSUMPTION;
D O I
10.1016/j.enbuild.2010.05.007
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Buildings demand energy in their life cycle right from its construction to demolition. Studies on the total energy use during the life cycle are desirable to identify phases of largest energy use and to develop strategies for its reduction. In the present paper, a critical review of the life cycle energy analyses of buildings resulting from 73 cases across 13 countries is presented. The study includes both residential and office buildings. Results show that operating (80-90%) and embodied (10-20%) phases of energy use are significant contributors to building's life cycle energy demand. Life cycle energy (primary) requirement of conventional residential buildings falls in the range of 150-400 kWh/m(2) per year and that of office buildings in the range of 250-550 kWh/m(2) per year. Building's life cycle energy demand can be reduced by reducing its operating energy significantly through use of passive and active technologies even if it leads to a slight increase in embodied energy. However, an excessive use of passive and active features in a building may be counterproductive. It is observed that low energy buildings perform better than self-sufficient (zero operating energy) buildings in the life cycle context. Since, most of the case studies available in open literature pertain to developed and/or cold countries; hence, energy indicative figures for developing and/or non-cold countries need to be evaluated and compared with the results presented in this paper. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1592 / 1600
页数:9
相关论文
共 50 条
  • [1] Life cycle primary energy analysis of residential buildings
    Gustavsson, Leif
    Joelsson, Anna
    ENERGY AND BUILDINGS, 2010, 42 (02) : 210 - 220
  • [2] Minimising the life cycle energy of buildings: Review and analysis
    Karimpour, Mahsa
    Belusko, Martin
    Xing, Ke
    Bruno, Frank
    BUILDING AND ENVIRONMENT, 2014, 73 : 106 - 114
  • [3] Life cycle energy analysis of buildings: A systematic review
    Dahiya, Devender
    Laishram, Boeing
    BUILDING AND ENVIRONMENT, 2024, 252
  • [4] A new energy indicator for life cycle analysis of buildings
    Habert, G.
    Castillo, E.
    Vincens, E.
    Morel, J. C.
    INTERNATIONAL SYMPOSIUM ON LIFE CYCLE ASSESSMENT AND CONSTRUCTION: CIVIL ENGINEERING AND BUILDINGS, 2012, 86 : 73 - 80
  • [5] Life-cycle energy analysis of buildings: a case study
    Fay, R
    Treloar, G
    Iyer-Raniga, U
    BUILDING RESEARCH AND INFORMATION, 2000, 28 (01): : 31 - 41
  • [6] Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review
    Cabeza, Luisa F.
    Rincon, Lidia
    Vilarino, Virginia
    Perez, Gabriel
    Castell, Albert
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 29 : 394 - 416
  • [7] Alternative materials for desert buildings: a comparative life cycle energy analysis
    Pearlmutter, D.
    Freidin, C.
    Huberman, N.
    BUILDING RESEARCH AND INFORMATION, 2007, 35 (02): : 144 - 155
  • [8] Life cycle energy and carbon analysis of commercial and residential buildings in India
    Rajasekharan, K. Ayeratharasu
    Porchelvan, P.
    GLOBAL NEST JOURNAL, 2023, 25 (01): : 134 - 140
  • [9] Towards a comprehensive life cycle energy analysis framework for residential buildings
    Stephan, Andre
    Crawford, Robert H.
    de Myttenaere, Kristel
    ENERGY AND BUILDINGS, 2012, 55 : 592 - 600
  • [10] Life cycle analysis in refurbishment of the buildings as intervention practices in energy saving
    Badea, Nicolae
    George-Vlad, Badea
    ENERGY AND BUILDINGS, 2015, 86 : 74 - 85