Generalized additive partial linear models for analyzing correlated data

被引:9
|
作者
Manghi, Roberto F. [2 ]
Cysneiros, Francisco Jose A. [2 ]
Paula, Gilberto A. [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, Brazil
[2] Univ Fed Pernambuco, Dept Estat, Recife, PE, Brazil
基金
巴西圣保罗研究基金会;
关键词
Backlitting algorithm; Diagnostic procedures; Longitudinal data; Natural cubic splines; Semiparametric models; ESTIMATING EQUATIONS; REGRESSION-MODELS; LONGITUDINAL DATA; DIVERGING NUMBER; LOCAL INFLUENCE; DIAGNOSTICS; SPLINES;
D O I
10.1016/j.csda.2018.08.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Statistical procedures are proposed in generalized additive partial linear models (GAPLM) for analyzing correlated data. A reweighed iterative process based on the backfitting algorithm is derived for the parameter estimation from a penalized GEE. Discussions on the inferential aspects of GAPLM, particularly on the asymptotic properties of the former estimators as well as on the effective degrees of freedom derivation, are given. Diagnostic methods, such as leverage measures, residual analysis and local influence graphs, under different perturbation schemes, are proposed. A small simulation study is performed to assess the empirical distribution of the parametric and nonparametric estimators as well as of some proposed residuals. Finally, a motivating data set is analyzed by the methodology developed through the paper. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:47 / 60
页数:14
相关论文
共 50 条
  • [21] Generalized Rank-Based Estimates for Linear Models with Cluster Correlated Data
    Kloke, John
    ROBUST RANK-BASED AND NONPARAMETRIC METHODS, 2016, 168 : 47 - 60
  • [22] Generalized linear mixed models for correlated binary data with t-link
    Prates, Marcos O.
    Costa, Denise R.
    Lachos, Victor H.
    STATISTICS AND COMPUTING, 2014, 24 (06) : 1111 - 1123
  • [23] Generalized linear mixed models for correlated binary data with t-link
    Marcos O. Prates
    Denise R. Costa
    Victor H. Lachos
    Statistics and Computing, 2014, 24 : 1111 - 1123
  • [24] Testing for generalized linear mixed models with cluster correlated data under linear inequality constraints
    Davis, Karelyn A.
    Park, Chul G.
    Sinha, Sanjoy K.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2012, 40 (02): : 243 - 258
  • [25] Generalized additive models for functional data
    Manuel Febrero-Bande
    Wenceslao González-Manteiga
    TEST, 2013, 22 : 278 - 292
  • [26] Generalized Additive Models for Functional Data
    Febrero-Bande, Manuel
    Gonzalez-Manteiga, Wenceslao
    RECENT ADVANCES IN FUNCTIONAL DATA ANALYSIS AND RELATED TOPICS, 2011, : 91 - 96
  • [27] Generalized additive models for longitudinal data
    Berhane, K
    Tibshirani, RJ
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (04): : 517 - 535
  • [28] Generalized additive models for functional data
    Febrero-Bande, Manuel
    Gonzalez-Manteiga, Wenceslao
    TEST, 2013, 22 (02) : 278 - 292
  • [29] Additive partial linear models with measurement errors
    Liang, Hua
    Thurston, Sally W.
    Ruppert, David
    Apanasovich, Tatiyana
    Hauser, Russ
    BIOMETRIKA, 2008, 95 (03) : 667 - 678
  • [30] Variance function additive partial linear models
    Fang, Yixin
    Lian, Heng
    Liang, Hua
    Ruppert, David
    ELECTRONIC JOURNAL OF STATISTICS, 2015, 9 (02): : 2793 - 2827