Variance function additive partial linear models

被引:3
|
作者
Fang, Yixin [1 ]
Lian, Heng [2 ]
Liang, Hua [3 ]
Ruppert, David [4 ]
机构
[1] NYU, Sch Med, Dept Populat Hlth, New York, NY 10016 USA
[2] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[3] George Washington Univ, Dept Stat, 801 22nd St NW, Washington, DC 20052 USA
[4] Cornell Univ, Dept Stat Sci, Ithaca, NY 14853 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2015年 / 9卷 / 02期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Efficiency; heteroscedasticity; generalized least squares; regression spline; variance function;
D O I
10.1214/15-EJS1080
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
To model heteroscedasticity in a broad class of additive partial linear models, we allow the variance function to be an additive partial linear model as well and the parameters in the variance function to be different from those in the mean function. We develop a two-step estimation procedure, where in the first step initial estimates of the parameters in both the mean and variance functions are obtained and then in the second step the estimates are updated using the weights based on the initial estimates. We use polynomial splines to approximate the additive nonparametric components in both the mean and variation functions and derive their convergence rates. The resulting weighted estimators of the linear coefficients in both the mean and variance functions are shown to be asymptotically normal and more efficient than the initial un-weighted estimators. Simulation experiments are conducted to examine the numerical performance of the proposed procedure, which is also applied to analyze the dataset from a nutritional epidemiology study.
引用
收藏
页码:2793 / 2827
页数:35
相关论文
共 50 条
  • [1] Additive partial linear models with measurement errors
    Liang, Hua
    Thurston, Sally W.
    Ruppert, David
    Apanasovich, Tatiyana
    Hauser, Russ
    [J]. BIOMETRIKA, 2008, 95 (03) : 667 - 678
  • [2] Model averaging for semiparametric additive partial linear models
    Deng GuoHua
    Liang Hua
    [J]. SCIENCE CHINA-MATHEMATICS, 2010, 53 (05) : 1363 - 1376
  • [3] Model averaging for semiparametric additive partial linear models
    DENG GuoHua1 & LIANG Hua21School of Finance and Statistics
    [J]. Science China Mathematics, 2010, 53 (05) : 326 - 339
  • [4] Model averaging for semiparametric additive partial linear models
    GuoHua Deng
    Hua Liang
    [J]. Science China Mathematics, 2010, 53 : 1363 - 1376
  • [5] Partial linear additive distortion measurement errors models
    Zhang, Jun
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (01) : 232 - 259
  • [6] Estimation of the Variance Function in Heteroscedastic Linear Regression Models
    Shen, Silian
    Mei, Changlin
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (07) : 1098 - 1112
  • [7] ESTIMATION AND VARIABLE SELECTION FOR GENERALIZED ADDITIVE PARTIAL LINEAR MODELS
    Wang, Li
    Liu, Xiang
    Liang, Hua
    Carroll, Raymond J.
    [J]. ANNALS OF STATISTICS, 2011, 39 (04): : 1827 - 1851
  • [8] ESTIMATION AND VARIABLE SELECTION FOR SEMIPARAMETRIC ADDITIVE PARTIAL LINEAR MODELS
    Liu, Xiang
    Wang, Li
    Liang, Hua
    [J]. STATISTICA SINICA, 2011, 21 (03) : 1225 - 1248
  • [9] Generalized additive partial linear models for analyzing correlated data
    Manghi, Roberto F.
    Cysneiros, Francisco Jose A.
    Paula, Gilberto A.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 129 : 47 - 60
  • [10] Bayesian variable selection in generalized additive partial linear models
    Banerjee, Sayantan
    Ghosal, Subhashis
    [J]. STAT, 2014, 3 (01): : 363 - 378