Investigation of galling mechanisms of 316L stainless steel using finite element method

被引:0
|
作者
Franz, G. [1 ]
Agode, K. E. [1 ,2 ]
Panier, S. [1 ]
Lesage, T. [2 ]
Jourani, A. [2 ]
机构
[1] Univ Picardie Jules Verne, Lab Technol Innovantes, EA 3899, IUT GMP, F-80025 Amiens, France
[2] UTC, Ctr Rech Royallieu, CNRS, Lab Roberval,UMR 7337, F-60203 Compiegne, France
关键词
Galling; finite element modeling; 316 L austenitic Steel;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Galling, defined as a severe kind of adhesive wear encountered when friction occurs between two sliding surfaces under sufficient load, is a complex multiscale and multi-physics phenomenon still not thoroughly understood. Its initiation and propagation is impacted by different factors related to microstructure, surface defects or chemical composition. Currently, a normalized galling test, denoted ASTM G-98, can be used to determine experimentally a threshold galling stress of material couples. A finite element modeling, using ABAQUS, of this tribological test is purposed in order to investigate the mechanisms appearing during galling of 316L stainless steel in particular.
引用
收藏
页码:251 / 252
页数:2
相关论文
共 50 条
  • [21] In-situ TEM investigation on deformation mechanisms of a fine-grained 316L stainless steel
    Gao, Bo
    Wang, Li
    Liu, Yi
    Liu, Junliang
    Sui, Yudong
    Sun, Wenwen
    Chen, Xuefei
    Xiao, Lirong
    Zhou, Hao
    SCRIPTA MATERIALIA, 2023, 234
  • [22] Investigation of the bonding strength of the stainless steel 316L/polyurethane/stainless steel 316L tri-layer composite produced by the warm rolling process
    Andani, Mehran Kamali
    Daneshmanesh, Habib
    Jahromi, Seyed Ahmad Jenabali
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2020, 22 (03) : 728 - 742
  • [23] Diffusion bonding of 316L stainless steel
    Hu R.
    Ji K.
    Wang Y.
    Wang D.
    Yang Z.
    Hanjie Xuebao/Transactions of the China Welding Institution, 2023, 44 (05): : 1 - 6
  • [24] Biocompatibility of MIM 316L stainless steel
    Shai-hong Zhu
    Guo-hui Wang
    Yan-zhong Zhao
    Yi-ming Li
    Ke-chao Zhou
    Bai-yun Huang
    Journal of Central South University of Technology, 2005, 12 : 9 - 11
  • [25] Biocompatibility of MIM 316L stainless steel
    Zhu, SH
    Wang, GH
    Zhao, YZ
    Li, YM
    Zhou, KC
    Huang, BY
    JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2005, 12 (Suppl 1): : 9 - 11
  • [26] Fatigue Properties of 316L Stainless Steel
    Zhao, Xiao
    PROGRESS IN INDUSTRIAL AND CIVIL ENGINEERING, PTS. 1-5, 2012, 204-208 : 3786 - 3789
  • [27] Electrochemical Black of 316L Stainless Steel
    Zhang C.-S.
    Zhou L.-M.
    Yan D.
    Hou S.-G.
    Wang S.-H.
    Wu W.-M.
    Surface Technology, 2022, 51 (12): : 217 - 224and254
  • [28] Study on the cleanliness of 316L Stainless Steel
    Li, Gang
    Li, Jingshe
    Yang, Shufeng
    Wang, Yanjie
    Li, Naisong
    ADVANCED MATERIALS AND PROCESSES, PTS 1-3, 2011, 311-313 : 881 - +
  • [29] Cold drawing of 316L stainless steel thin-walled tubes: Experiments and finite element analysis
    Palengat, M.
    Chagnon, G.
    Favier, D.
    Louche, H.
    Linardon, C.
    Plaideau, C.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2013, 70 : 69 - 78
  • [30] Finite element modeling of melt pool dynamics in laser powder bed fusion of 316L stainless steel
    Juan Trejos-Taborda
    Luis Reyes-Osorio
    Carlos Garza
    Patricia del Carmen Zambrano-Robledo
    Omar Lopez-Botello
    The International Journal of Advanced Manufacturing Technology, 2022, 120 : 3947 - 3961