Supersymmetry-Inspired Non-Hermitian Optical Couplers

被引:21
|
作者
Principe, Maria [1 ,2 ]
Castaldi, Giuseppe [1 ]
Consales, Marco [2 ]
Cusano, Andrea [2 ]
Galdi, Vincenzo [1 ]
机构
[1] Univ Sannio, Dept Engn, Waves Grp, I-82100 Benevento, Italy
[2] Univ Sannio, Dept Engn, Div Optoelect, I-82100 Benevento, Italy
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
GAIN-ASSISTED PROPAGATION; ROOM-TEMPERATURE GAIN; PLASMONIC WAVE-GUIDE; DIFFERENTIAL GAIN; MU-M; DESIGN;
D O I
10.1038/srep08568
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Supersymmetry has been shown to provide a systematic and effective framework for generating classes of isospectral optical structures featuring perfectly-phase-matched modes, with the exception of one (fundamental) mode which can be removed. More recently, this approach has been extended to non-Hermitian scenarios characterized by spatially-modulated distributions of optical loss and gain, in order to allow the removal of higher-order modes as well. In this paper, we apply this approach to the design of non-Hermitian optical couplers with higher-order mode-selection functionalities, with potential applications to mode-division multiplexing in optical links. In particular, we highlight the critical role of the coupling between non-Hermitian optical waveguides, which generally induces a phase transition to a complex eigenspectrum, thereby hindering the targeted mode-selection functionality. With the specific example of an optical coupler that selects the second-order mode of a given waveguide, we illustrate the aforementioned limitations and propose possible strategies to overcome them, bearing in mind the practical feasibility of the gain levels required.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Optical non-Hermitian para-Fermi oscillators
    Rodriguez-Walton, S.
    Jaramillo Avila, B.
    Rodriguez-Lara, B. M.
    PHYSICAL REVIEW A, 2020, 101 (04)
  • [32] Uniform optical gain as a non-Hermitian control knob
    Hashemi, A.
    Busch, K.
    Ozdemir, S. K.
    El-Ganainy, R.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [33] Optical Lattice Design Assisted by Non-Hermitian Hamiltonians
    Rodriguez-Lara, B. M.
    QUANTUM FEST 2015, 2016, 698
  • [34] Phase transitions in dispersive Non-Hermitian optical systems
    Shramkova, O.
    Makris, K.
    Tsironis, G.
    2016 10TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS), 2016, : 337 - 339
  • [35] Optical Realization of Relativistic Non-Hermitian Quantum Mechanics
    Longhi, Stefano
    PHYSICAL REVIEW LETTERS, 2010, 105 (01)
  • [36] Interactions of Hermitian and non-Hermitian Hamiltonians
    Bender, Carl M.
    Jones, Hugh F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (24)
  • [37] Non-Hermitian physics
    Ashida, Yuto
    Gong, Zongping
    Ueda, Masahito
    ADVANCES IN PHYSICS, 2020, 69 (03) : 249 - 435
  • [38] Non-Hermitian Optomechanics
    Primo, Andre G.
    Carvalho, Natalia C.
    Kersul, Cane M.
    Wiederhecker, Gustavo S.
    Frateschi, Newton C.
    Alegre, Thiago P. M.
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [39] Non-linear supersymmetry for non-Hermitian, non-diagonalizable Hamiltonians: II. Rigorous results
    Sokolov, A. V.
    NUCLEAR PHYSICS B, 2007, 773 (03) : 137 - 171
  • [40] Non-linear supersymmetry for non-hermitian, non-diagonalizable Hamiltonians: I. General properties
    Andrianov, A. A.
    Cannata, F.
    Sokolov, A. V.
    NUCLEAR PHYSICS B, 2007, 773 (03) : 107 - 136