Supersymmetry-Inspired Non-Hermitian Optical Couplers

被引:21
|
作者
Principe, Maria [1 ,2 ]
Castaldi, Giuseppe [1 ]
Consales, Marco [2 ]
Cusano, Andrea [2 ]
Galdi, Vincenzo [1 ]
机构
[1] Univ Sannio, Dept Engn, Waves Grp, I-82100 Benevento, Italy
[2] Univ Sannio, Dept Engn, Div Optoelect, I-82100 Benevento, Italy
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
GAIN-ASSISTED PROPAGATION; ROOM-TEMPERATURE GAIN; PLASMONIC WAVE-GUIDE; DIFFERENTIAL GAIN; MU-M; DESIGN;
D O I
10.1038/srep08568
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Supersymmetry has been shown to provide a systematic and effective framework for generating classes of isospectral optical structures featuring perfectly-phase-matched modes, with the exception of one (fundamental) mode which can be removed. More recently, this approach has been extended to non-Hermitian scenarios characterized by spatially-modulated distributions of optical loss and gain, in order to allow the removal of higher-order modes as well. In this paper, we apply this approach to the design of non-Hermitian optical couplers with higher-order mode-selection functionalities, with potential applications to mode-division multiplexing in optical links. In particular, we highlight the critical role of the coupling between non-Hermitian optical waveguides, which generally induces a phase transition to a complex eigenspectrum, thereby hindering the targeted mode-selection functionality. With the specific example of an optical coupler that selects the second-order mode of a given waveguide, we illustrate the aforementioned limitations and propose possible strategies to overcome them, bearing in mind the practical feasibility of the gain levels required.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] Dispersive non-Hermitian optical heterostructures
    O.V.SHRAMKOVA
    K.G.MAKRIS
    D.N.CHRISTODOULIDES
    G.P.TSIRONIS
    Photonics Research, 2018, (04) : 206 - 210
  • [12] Dispersive non-Hermitian optical heterostructures
    Shramkova, O. V.
    Makris, K. G.
    Christodoulides, D. N.
    Tsironis, G. P.
    PHOTONICS RESEARCH, 2018, 6 (04) : A1 - A5
  • [13] LINKED PT-SYMMETRY TO SUPERSYMMETRY IN A CLASS OF NON-HERMITIAN HAMILTONIANS
    Shalaby, Abouzeid M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2012, 27 (10):
  • [14] PT-symmetric non-Hermitian quantum field theories with supersymmetry
    Alexandre, Jean
    Ellis, John
    Millington, Peter
    PHYSICAL REVIEW D, 2020, 101 (08)
  • [15] Optical turbulence control by non-Hermitian potentials
    Ivars, Salim B.
    Botey, Muriel
    Herrero, Ramon
    Staliunas, Kestutis
    PHYSICAL REVIEW A, 2022, 105 (03)
  • [16] Guided modes in non-Hermitian optical waveguides
    Turitsyna, Elena G.
    Shadrivov, Ilya V.
    Kivshar, Yuri S.
    PHYSICAL REVIEW A, 2017, 96 (03)
  • [17] Nonreciprocal and Non-Hermitian Material Response Inspired Semiconductor Transistors
    Lannebere, Sylvain
    Fernandes, David E.
    Morgado, Tiago A.
    Silveirinha, Mario G.
    PHYSICAL REVIEW LETTERS, 2022, 128 (01)
  • [18] Non-Hermitian Skin Effect in a Non-Hermitian Electrical Circuit
    Liu, Shuo
    Shao, Ruiwen
    Ma, Shaojie
    Zhang, Lei
    You, Oubo
    Wu, Haotian
    Xiang, Yuan Jiang
    Cui, Tie Jun
    Zhang, Shuang
    RESEARCH, 2021, 2021
  • [19] Supersymmetry-inspired low-energy α–p elastic scattering phases
    J. Bhoi
    U. Laha
    Theoretical and Mathematical Physics, 2017, 190 : 69 - 76
  • [20] SUPERSYMMETRY-INSPIRED LOW-ENERGY α-p ELASTIC SCATTERING PHASES
    Bhoi, J.
    Laha, U.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 190 (01) : 69 - 76