HTRA proteases: regulated proteolysis in protein quality control

被引:368
|
作者
Clausen, Tim [1 ]
Kaiser, Markus [2 ]
Huber, Robert [2 ,3 ,4 ]
Ehrmann, Michael [2 ,4 ]
机构
[1] Res Inst Mol Pathol IMP, A-1030 Vienna, Austria
[2] Univ Duisburg Essen, Ctr Med Biotechnol, Fac Biol, D-45117 Essen, Germany
[3] Max Planck Inst Biochem, D-82152 Martinsried, Germany
[4] Cardiff Univ, Sch Biosci, Cardiff CF10 3US, S Glam, Wales
关键词
HIGH-TEMPERATURE REQUIREMENT; AMYLOID PRECURSOR PROTEIN; IGF-BINDING PROTEINS; ENVELOPE-STRESS-RESPONSE; GROWTH-FACTOR IGF; SERINE-PROTEASE; ESCHERICHIA-COLI; PHOTOSYSTEM-II; PDZ DOMAIN; CRYSTAL-STRUCTURE;
D O I
10.1038/nrm3065
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Controlled proteolysis underlies a vast diversity of protective and regulatory processes that are of key importance to cell fate. The unique molecular architecture of the widely conserved high temperature requirement A (HTRA) proteases has evolved to mediate critical aspects of ATP-independent protein quality control. The simple combination of a classic Ser protease domain and a carboxy-terminal peptide-binding domain produces cellular factors of remarkable structural and functional plasticity that allow cells to rapidly respond to the presence of misfolded or mislocalized polypeptides.
引用
下载
收藏
页码:152 / 162
页数:11
相关论文
共 50 条
  • [41] ATP-Dependent Lon Proteases in the Cellular Protein Quality Control System
    A. M. Kudzhaev
    A. G. Andrianova
    A. E. Gustchina
    I. V. Smirnov
    T. V. Rotanova
    Russian Journal of Bioorganic Chemistry, 2022, 48 : 678 - 709
  • [42] Borrelia burgdorferi HtrA: evidence for twofold proteolysis of outer membrane protein p66
    Coleman, James L.
    Toledo, Alvaro
    Benach, Jorge L.
    MOLECULAR MICROBIOLOGY, 2016, 99 (01) : 135 - 150
  • [43] The improvement of the functional properties of a chickpea protein isolate through proteolysis with three proteases
    Goertzen, Alexandre D.
    Nickerson, Michael T.
    Tanaka, Takuji
    CEREAL CHEMISTRY, 2021, 98 (03) : 439 - 449
  • [44] Binding of nonphysiological protein and peptide substrates to proteases: Differences between urokinase-type plasminogen activator and trypsin and contributions to the evolution of regulated proteolysis
    Bergstrom, RC
    Coombs, GS
    Ye, S
    Madison, EL
    Goldsmith, EJ
    Corey, DR
    BIOCHEMISTRY, 2003, 42 (18) : 5395 - 5402
  • [45] Regulated specific proteolysis of the Cajal body marker protein coilin
    Velma, Venkatramreddy
    Broome, Hanna J.
    Hebert, Michael D.
    CHROMOSOMA, 2012, 121 (06) : 629 - 642
  • [46] Amyloid precursor protein proteolysis in human platelets is regulated by calmodulin
    Canobbio, I
    Catricala, S.
    Cipolla, L.
    Balduini, C.
    Torti, M.
    JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2009, 7 : 331 - 331
  • [47] Regulated specific proteolysis of the Cajal body marker protein coilin
    Venkatramreddy Velma
    Hanna J. Broome
    Michael D. Hebert
    Chromosoma, 2012, 121 : 629 - 642
  • [48] Signal peptide peptidase and related aspartic proteases; expanding the repertoire of signaling through regulated intramembrane proteolysis
    Martoglio, B
    Kobialko, M
    Friedmann, E
    FASEB JOURNAL, 2005, 19 (04): : A770 - A770
  • [49] Regulated intramembrane proteolysis in the control of extracytoplasmic function sigma factors
    Heinrich, Janine
    Wiegert, Thomas
    RESEARCH IN MICROBIOLOGY, 2009, 160 (09) : 696 - 703
  • [50] HtrA Serine Proteases as Potential Therapeutic Targets in Cancer
    Chien, Jeremy
    Campioni, Mara
    Shridhar, Viji
    Baldi, Alfonso
    CURRENT CANCER DRUG TARGETS, 2009, 9 (04) : 451 - 468