Phase- and Halogen-Dependent Room-Temperature Phosphorescence Properties of Biphenylnitrile Derivatives

被引:5
|
作者
Xie, Ning [2 ]
Yu, Hanbo [2 ]
Wang, Jiaxuan [2 ]
Li, Zhiqiang [1 ]
Wei, Jinbei [2 ]
Wang, Yue [2 ]
机构
[1] Jihua Lab, Foshan 528200, Guangdong, Peoples R China
[2] Jilin Univ, Coll Chem, Engn Res Ctr Organ Polymer Optoelect Mat, Minist Educ, Changchun 130012, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2021年 / 125卷 / 49期
基金
中国国家自然科学基金;
关键词
ULTRALONG PHOSPHORESCENCE; EXCITED-STATES; DUAL-EMISSION; PERSISTENT; FLUORESCENCE; MOLECULES; AFTERGLOW;
D O I
10.1021/acs.jpcc.1c09305
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The photophysical properties of halogenated biphenylnitrile derivatives (X-BPhN, X = F, Cl, and Br) were systematically investigated, and bromobiphenylnitrile (Br-BPhN)-based solids exhibit phase-dependent room-temperature phosphorescence (RTP) characteristics. The perfect crystalline, lower-quality crystalline, and amorphous solids of Br-BPhN were prepared and exhibited different RTP properties. Two kinds of crystals obtained by slow vacuum gradient sublimation (crystal 1: high-quality crystal) and quick solvent evaporation (crystal 2: low-quality crystal) are attributed to an identical crystalline phase. The absolute phosphorescence quantum yields (Phi(P)) for crystal 1 and crystal 2 are 9.1 and 6.0%, respectively, while the amorphous sample Br-BPhN has an extremely low Phi(P) of 1.4%. Theoretical calculations and experimental results demonstrate that multiple intermolecular interactions including halogen bond-induced rigid supramolecular frameworks in the crystalline phase can enhance the RTP of Br-BPhN-based solids. This contribution presents a useful mode molecule to study the mechanism of organic RTP and may provide a feasible approach to develop pure organic phosphors with efficient RTP feature.
引用
收藏
页码:27489 / 27496
页数:8
相关论文
共 50 条
  • [41] Studies on the room temperature phosphorescence of halogen naphthalic anhydrides
    Jia, LH
    Guo, XF
    Qian, XH
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2004, 32 (06) : 837 - 837
  • [42] Mechanoluminescence or Room-Temperature Phosphorescence: Molecular Packing-Dependent Emission Response
    Wang, Jinfeng
    Chai, Zhaofei
    Wang, Jiaqiang
    Wang, Can
    Han, Mengmeng
    Liao, Qiuyan
    Huang, Arui
    Lin, Peixuan
    Li, Conggang
    Li, Qianqian
    Li, Zhen
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (48) : 17297 - 17302
  • [43] MATRIX EFFECT ON LIFETIME OF ROOM-TEMPERATURE PHOSPHORESCENCE
    NIDAY, GJ
    SEYBOLD, PG
    ANALYTICAL CHEMISTRY, 1978, 50 (11) : 1577 - 1578
  • [44] REDUCTION OF BACKGROUND EMISSION IN ROOM-TEMPERATURE PHOSPHORESCENCE
    MCALEESE, DL
    DUNLAP, RB
    ANALYTICAL CHEMISTRY, 1984, 56 (03) : 600 - 601
  • [45] AN EVALUATION OF CELLULOSE AS A SUBSTRATE FOR ROOM-TEMPERATURE PHOSPHORESCENCE
    BATEH, RP
    WINEFORDNER, JD
    TALANTA, 1982, 29 (08) : 713 - 717
  • [46] SENSITIZERS FOR THE ROOM-TEMPERATURE PHOSPHORESCENCE OF BIACETYL IN FATS
    SARGI, L
    PROGNON, P
    MAHUZIER, G
    CEPEDA, A
    VAZQUEZ, ML
    BLAIS, J
    BISAGNI, E
    ANALYST, 1991, 116 (02) : 159 - 164
  • [47] PHARMACEUTICAL DETERMINATION BY DERIVATIZATION - ROOM-TEMPERATURE PHOSPHORESCENCE
    LONG, WJ
    NORIN, RC
    SU, SY
    ANALYTICAL CHEMISTRY, 1985, 57 (14) : 2873 - 2877
  • [48] Room-temperature phosphorescence (RTP) for optical sensing
    Sanchez-Barragan, I.
    Costa-Fernandez, J. M.
    Valledor, M.
    Campo, J. C.
    Sanz-Medel, A.
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2006, 25 (10) : 958 - 967
  • [49] ROOM-TEMPERATURE PHOSPHORESCENCE IN LIQUID-CHROMATOGRAPHY
    PROGNON, P
    CEPEDA, A
    SARGI, L
    BISAGNI, E
    MAHUZIER, G
    ANALUSIS, 1990, 18 (01) : 1 - 8
  • [50] Organic room-temperature phosphorescence materials for bioimaging
    Zhang, Yahui
    Li, Hairong
    Yang, Mengdie
    Dai, Wenbo
    Shi, Jianbing
    Tong, Bin
    Cai, Zhengxu
    Wang, Zhouyu
    Dong, Yuping
    Yu, Xiaoqi
    CHEMICAL COMMUNICATIONS, 2023, 59 (36) : 5329 - 5342