Phase- and Halogen-Dependent Room-Temperature Phosphorescence Properties of Biphenylnitrile Derivatives

被引:5
|
作者
Xie, Ning [2 ]
Yu, Hanbo [2 ]
Wang, Jiaxuan [2 ]
Li, Zhiqiang [1 ]
Wei, Jinbei [2 ]
Wang, Yue [2 ]
机构
[1] Jihua Lab, Foshan 528200, Guangdong, Peoples R China
[2] Jilin Univ, Coll Chem, Engn Res Ctr Organ Polymer Optoelect Mat, Minist Educ, Changchun 130012, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2021年 / 125卷 / 49期
基金
中国国家自然科学基金;
关键词
ULTRALONG PHOSPHORESCENCE; EXCITED-STATES; DUAL-EMISSION; PERSISTENT; FLUORESCENCE; MOLECULES; AFTERGLOW;
D O I
10.1021/acs.jpcc.1c09305
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The photophysical properties of halogenated biphenylnitrile derivatives (X-BPhN, X = F, Cl, and Br) were systematically investigated, and bromobiphenylnitrile (Br-BPhN)-based solids exhibit phase-dependent room-temperature phosphorescence (RTP) characteristics. The perfect crystalline, lower-quality crystalline, and amorphous solids of Br-BPhN were prepared and exhibited different RTP properties. Two kinds of crystals obtained by slow vacuum gradient sublimation (crystal 1: high-quality crystal) and quick solvent evaporation (crystal 2: low-quality crystal) are attributed to an identical crystalline phase. The absolute phosphorescence quantum yields (Phi(P)) for crystal 1 and crystal 2 are 9.1 and 6.0%, respectively, while the amorphous sample Br-BPhN has an extremely low Phi(P) of 1.4%. Theoretical calculations and experimental results demonstrate that multiple intermolecular interactions including halogen bond-induced rigid supramolecular frameworks in the crystalline phase can enhance the RTP of Br-BPhN-based solids. This contribution presents a useful mode molecule to study the mechanism of organic RTP and may provide a feasible approach to develop pure organic phosphors with efficient RTP feature.
引用
收藏
页码:27489 / 27496
页数:8
相关论文
共 50 条
  • [21] Brightening room-temperature phosphorescence in solution
    Fei Nie
    Dongpeng Yan
    Science China Chemistry, 2023, 66 : 611 - 612
  • [22] ROOM-TEMPERATURE PHOSPHORESCENCE OPTOSENSOR FOR TETRACYCLINES
    ALAVAMORENO, F
    DIAZGARCIA, ME
    SANZMEDEL, A
    ANALYTICA CHIMICA ACTA, 1993, 281 (03) : 637 - 644
  • [23] ROOM-TEMPERATURE PHOSPHORESCENCE OF IMPURE FLUORENE
    BRUZZONE, L
    BADIA, R
    ANALYTICAL LETTERS, 1990, 23 (06) : 1113 - 1121
  • [24] LIFETIME SPECTRA FOR ROOM-TEMPERATURE PHOSPHORESCENCE
    MURRAY, KA
    GONZALEZ, E
    GREGORY, RB
    STREET, KW
    APPLIED SPECTROSCOPY, 1989, 43 (02) : 351 - 354
  • [25] ROOM-TEMPERATURE PHOSPHORESCENCE OF WOOL KERATIN
    LEAVER, IH
    PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1978, 27 (04) : 439 - 443
  • [26] ROOM-TEMPERATURE PHOSPHORESCENCE IN MICELLAR SOLUTION
    LOVE, LJC
    SKRILEC, M
    AMERICAN LABORATORY, 1981, 13 (03) : 103 - &
  • [27] ROOM-TEMPERATURE PHOSPHORESCENCE IN MICELLAR SOLUTION
    LOVE, LJC
    SKRILEC, M
    INTERNATIONAL LABORATORY, 1981, 11 (03): : 50 - &
  • [28] Brightening room-temperature phosphorescence in solution
    Fei Nie
    Dongpeng Yan
    Science China(Chemistry), 2023, (03) : 611 - 612
  • [29] ON THE PREVALENCE OF ROOM-TEMPERATURE PROTEIN PHOSPHORESCENCE
    VANDERKOOI, JM
    CALHOUN, DB
    ENGLANDER, SW
    SCIENCE, 1987, 236 (4801) : 568 - 569
  • [30] ROOM-TEMPERATURE PHOSPHORESCENCE OF SELECTED PTERIDINES
    PARKER, RT
    FREELANDER, RS
    SCHULMAN, EM
    DUNLAP, RB
    ANALYTICAL CHEMISTRY, 1979, 51 (12) : 1921 - 1926