Machine Learning Radiomics for Prediction of Cognitive Deficits by Using Amyloid Pet Images

被引:0
|
作者
Giovacchini, G. [1 ]
Giovannini, E. [1 ]
Duce, V. [1 ]
Pastorino, S. [1 ]
Ferrando, O. [1 ]
Foppiano, F. [1 ]
Passera, C. [1 ]
Mannironi, A. [1 ]
Tartaglione, A. [1 ]
机构
[1] S Andrea Hosp, La Spezia, Italy
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
EPS-084
引用
收藏
页码:S428 / S428
页数:1
相关论文
共 50 条
  • [41] A Machine Learning Approach Using FDG PET-Based Radiomics for Prediction of Tumor Mutational Burden and Prognosis in Stage IV Colorectal Cancer
    Lee, Hyunjong
    Moon, Seung Hwan
    Hong, Jung Yong
    Lee, Jeeyun
    Hyun, Seung Hyup
    CANCERS, 2023, 15 (15)
  • [42] Prediction of Histological Grade of Oral Squamous Cell Carcinoma Using Machine Learning Models Applied to 18F-FDG-PET Radiomics
    Nikkuni, Yutaka
    Nishiyama, Hideyoshi
    Hayashi, Takafumi
    BIOMEDICINES, 2024, 12 (07)
  • [43] Prediction of Lymph Node Metastasis in Prostate Cancer Patients Using 68 Ga-PSMA PET Radiomics Based Machine Learning Techniques
    Biyikoglu, S.
    Asa, S.
    Demirbilek, M.
    Saglam, K.
    Kabasakal, L.
    Sager, M.
    Sayman, H.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S543 - S544
  • [44] Spectrum Prediction in Cognitive Radio Network Using Machine Learning Techniques
    Arivudainambi, D.
    Mangairkarasi, S.
    Kumar, K. A. Varun
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 32 (03): : 1525 - 1540
  • [45] Preoperative prediction for early recurrence of hepatocellular carcinoma using machine learning-based radiomics
    Mao, Bing
    Ren, Yajun
    Yu, Xuan
    Liang, Xinliang
    Ding, Xiangming
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [46] Clinical Outcome Prediction Pipeline for Ischemic Stroke Patients Using Radiomics Features and Machine Learning
    Erdogan, Meryem Sahin
    Sumer, Esra
    Villagra, Federico
    Isik, Esin Ozturk
    Akanyeti, Otar
    Saybasili, Hale
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2023, 2024, 1453 : 504 - 515
  • [47] An Ensemble Machine Learning Approach to Predict Cognitive Impairment and Amyloid Deposition through Metabolic and Vascular Deficits in ADNI Cohorts
    Ma, David Wang
    Lin, Ai-Ling
    FASEB JOURNAL, 2018, 32 (01):
  • [48] Prediction of mutational status in lung cancer using PET radiomics
    Berraho, M.
    Tankyevych, O.
    Tachon, G.
    Hatt, M.
    Visvikis, D.
    le Rest, C. Cheze
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (SUPPL 1) : S353 - S353
  • [49] Cognitive Profiling Related to Cerebral Amyloid Beta Burden Using Machine Learning Approaches
    Ko, Hyunwoong
    Ihm, Jung-Joon
    Kim, Hong-Gee
    FRONTIERS IN AGING NEUROSCIENCE, 2019, 11
  • [50] Machine Learning Radiomics for Prediction of Survival in Non Small Cell Lung Cancer Patients Studied with PET/CT and FDG
    Giovannini, E.
    Florimonte, L.
    Bonatto, E.
    Bareggi, C.
    Dellavedova, L.
    Milano, A.
    Giovacchini, G.
    Duce, V.
    Aschele, C.
    Castellani, M.
    Ciarmiello, A.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (SUPPL 1) : S81 - S81