Machine Learning Radiomics for Prediction of Cognitive Deficits by Using Amyloid Pet Images

被引:0
|
作者
Giovacchini, G. [1 ]
Giovannini, E. [1 ]
Duce, V. [1 ]
Pastorino, S. [1 ]
Ferrando, O. [1 ]
Foppiano, F. [1 ]
Passera, C. [1 ]
Mannironi, A. [1 ]
Tartaglione, A. [1 ]
机构
[1] S Andrea Hosp, La Spezia, Italy
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
EPS-084
引用
收藏
页码:S428 / S428
页数:1
相关论文
共 50 条
  • [21] Prognostic prediction of hypertensive intracerebral hemorrhage using CT radiomics and machine learning
    Xu, Xinghua
    Zhang, Jiashu
    Yang, Kai
    Wang, Qun
    Chen, Xiaolei
    Xu, Bainan
    BRAIN AND BEHAVIOR, 2021, 11 (05):
  • [22] Prediction of blood supply in vestibular schwannomas using radiomics machine learning classifiers
    Song, Dixiang
    Zhai, Yixuan
    Tao, Xiaogang
    Zhao, Chao
    Wang, Minkai
    Wei, Xinting
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [23] Prediction of human papillomavirus associated oropharyngeal cancer using multiple machine learning algorithms and PET/CT image radiomics features
    Avval, Atlas Haddadi
    Hajianfar, Ghasem
    Amini, Mehdi
    Oveisi, Mehrdad
    Shiri, Isaac
    Zaidi, Habib
    JOURNAL OF NUCLEAR MEDICINE, 2021, 62
  • [24] PET-CT Fusion Based Outcome Prediction in Lung Cancer using Deep and Handcrafted Radiomics Features and Machine Learning
    Gorji, Arman
    Jouzdani, Ali Fathi
    Sanati, Nima
    Hosseinzadeh, Mahdi
    Mahboubisarighieh, Ali
    Rezaeijo, Seyed Masoud
    Maghsudi, Mehdi
    Moore, Sara
    Bonnie, Leung
    Uribe, Carlos
    Ho, Cheryl
    Rahmim, Arman
    Salmanpour, Mohammad R.
    JOURNAL OF NUCLEAR MEDICINE, 2023, 64
  • [25] Characterization of Breast Tumors from MR Images Using Radiomics and Machine Learning Approaches
    Faraz, Khuram
    Dauce, Gregoire
    Bouhamama, Amine
    Leporq, Benjamin
    Sasaki, Hajime
    Bito, Yoshitaka
    Beuf, Olivier
    Pilleul, Frank
    JOURNAL OF PERSONALIZED MEDICINE, 2023, 13 (07):
  • [26] Prediction of FFR from IVUS Images Using Machine Learning
    Kim, Geena
    Lee, June-Goo
    Kang, Soo-Jin
    Ngyuen, Paul
    Kang, Do-Yoon
    Lee, Pil Hyung
    Ahn, Jung-Min
    Park, Duk-Woo
    Lee, Seung-Whan
    Kim, Young-Hak
    Lee, Cheol Whan
    Park, Seong-Wook
    Park, Seung-Jung
    INTRAVASCULAR IMAGING AND COMPUTER ASSISTED STENTING AND LARGE-SCALE ANNOTATION OF BIOMEDICAL DATA AND EXPERT LABEL SYNTHESIS, 2018, 11043 : 73 - 81
  • [27] Radiomics analysis on CT images for prediction of radiation-induced kidney damage by machine learning models
    Amiri, Sepideh
    Akbarabadi, Mina
    Abdolali, Fatemeh
    Nikoofar, Alireza
    Esfahani, Azam Janati
    Cheraghi, Susan
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 133
  • [28] Using neuronal extracellular vesicles and machine learning to predict cognitive deficits in HIV
    Lynn Pulliam
    Michael Liston
    Bing Sun
    Jared Narvid
    Journal of NeuroVirology, 2020, 26 : 880 - 887
  • [29] Identifying cognitive deficits in cocaine dependence using standard tests and machine learning
    Jimenez, Said
    Angeles-Valdez, Diego
    Villicana, Viviana
    Reyes-Zamorano, Ernesto
    Alcala-Lozano, Ruth
    Gonzalez-Olvera, Jorge J.
    Garza-Villarreal, Eduardo A.
    PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2019, 95
  • [30] A Machine Learning Model with Radiomics Based on PET Images to Predict Pathological Response by Neoadjuvant Chemoradiotherapy for Esophageal Cancer
    Murakami, Y.
    Kawahara, D.
    Imano, N.
    Takahashi, I.
    Takeuchi, Y.
    Nishibuchi, I.
    Kimura, T.
    Nagata, Y.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E622 - E622