Post-combustion CO2 capture and separation in flue gas based on hydrate technology : A review

被引:57
|
作者
Cheng, Zucheng [1 ]
Li, Shaohua [1 ]
Liu, Yu [1 ]
Zhang, Yi [1 ]
Ling, Zheng [1 ]
Yang, Mingjun [1 ]
Jiang, Lanlan [1 ]
Song, Yongchen [1 ]
机构
[1] Dalian Univ Technol, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116024, Liaoning, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
CO2; hydrate; Capture; Fuel gas; Chemical additives; Efficiency; Process; PHASE-EQUILIBRIUM MEASUREMENTS; PRE-COMBUSTION CAPTURE; AQUEOUS-SOLUTION SYSTEMS; CARBON-DIOXIDE; CLATHRATE HYDRATE; THERMAL-CONDUCTIVITY; GRAPHITE NANOPARTICLES; KINETICS; METHANE; DISSOCIATION;
D O I
10.1016/j.rser.2021.111806
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hydrate-based CO2 separation technology is limited by complex formation conditions and low separation efficiency, makes it temporarily unable to realize commercial application. In this review, according to the superiority of additives in strengthening hydrate formation, the effects of different additives on the thermodynamics kinetics of hydrate formation were systematically summarized, and the strengthening mechanism was further elaborated from the perspectives of hydrate structure change and gas selectivity. Among them, quaternary ammonium salt is more environmentally friendly, and the separation factor reached 37 with TBAF, more than 90 mol% CO2 captured by the two-stage hydrate + membrane separation method. In addition, based on the characteristics of nanoparticles in enhancing heat and mass transfer, the impact of nanoparticles on the formation of CO2 hydrate was summarized, which provided a new idea for the research of additives. More importantly, the effects of experimental conditions and process flow on separation efficiency were also summarized. Energy analysis showed that the use of thermodynamic additives significantly reduced the investment cost of the system by more than 50%. However, higher hydrate formation heat leads to higher energy consumption, and the presence of kinetic additives improves significantly, emphasizing the urgency of developing more stable and lower formation heat thermodynamic additives and exploring the effect of mixed additives on commercial applications. At present, stirring methods were mostly used to strengthen hydrate formation with higher energy consumption. Future research should also strive to carry out experimental measurements under static conditions, and constantly optimize the reaction vessel and process.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] On the development of Vacuum Swing adsorption (VSA) technology for post-combustion CO2 capture
    Andersen, Anne
    Divekar, Swapnil
    Dasgupta, Soumen
    Cavka, Jasmina Hafizovic
    Aarti
    Nanoti, Anshu
    Spjelkavik, Aud
    Goswami, Amar N.
    Garg, M. O.
    Blom, Richard
    [J]. GHGT-11, 2013, 37 : 33 - 39
  • [42] Post-Combustion CO2 Capture with Sulfolane Based Activated Alkanolamine Solvent
    Dash, Sukanta K.
    Mondal, Bikash K.
    Samanta, Amar N.
    Bandyopadhyay, Syamalendu S.
    [J]. 12TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING (PSE) AND 25TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT A, 2015, 37 : 521 - 526
  • [43] Highly efficient absorbents for post-combustion CO2 capture
    Shim, Jae-Goo
    Kim, Jun-Han
    Lee, Ji Hyun
    Jang, Kyung-Ryong
    [J]. GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 779 - 782
  • [44] Thermal degradation of morpholine in CO2 post-combustion capture
    Ogidi, Michael O.
    Thompson, Warren A.
    Maroto-Valer, M. Mercedes
    [J]. 13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 1033 - 1037
  • [45] Process modifications for solvent-based post-combustion CO2 capture
    Le Moullec, Yann
    Neveux, Thibaut
    Al Azki, Adam
    Chikukwa, Actor
    Hoff, Karl Anders
    [J]. INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2014, 31 : 96 - 112
  • [46] Benchmarking of a micro gas turbine model integrated with post-combustion CO2 capture
    Ali, Usman
    Font-Palma, Carolina
    Somehsaraei, Homam Nikpey
    Majoumerd, Mohammad Mansouri
    Akram, Muhammad
    Finney, Karen N.
    Best, Thom
    Said, Nassya B. Mohd
    Assadi, Mohsen
    Pourkashanian, Mohamed
    [J]. ENERGY, 2017, 126 : 475 - 487
  • [47] New solvent blends for post-combustion CO2 capture
    Hanna K.Knuutila
    Rune Rennemo
    Arlinda F.Ciftja
    [J]. Green Energy & Environment, 2019, 4 (04) : 439 - 452
  • [48] Advancement in porous adsorbents for post-combustion CO2 capture
    Modak, Arindam
    Jana, Subhra
    [J]. MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 276 : 107 - 132
  • [49] Optimisation of post-combustion CO2 capture for flexible operation
    Mac Dowell, N.
    Shah, N.
    [J]. 12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 1525 - 1535
  • [50] Adsorption-based process modelling for post-combustion CO2 capture
    Plaza, M. G.
    Duran, I.
    Rubiera, F.
    Pevida, C.
    [J]. 13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 2353 - 2361