Optimisation of post-combustion CO2 capture for flexible operation

被引:31
|
作者
Mac Dowell, N. [1 ,2 ]
Shah, N. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Ctr Proc Syst Engn, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Ctr Environm Policy, London SW7 1NA, England
关键词
CCS; CO2; capture; flexible CCS; SC-PCC; amine-scrubbing; SAFT; rate-based modelling; dynamic optimisation; POWER-PLANTS; CCS; SOLVENT; COST; DESIGN;
D O I
10.1016/j.egypro.2014.11.162
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In order to accommodate the increasing penetration of intermittent renewable electricity generation capacity, it is becoming increasingly clear that decarbonized fossil-fired power plants will have to operate in a highly flexible fashion. In this study, using detailed mathematical models of a coal-fired power plant integrated with a MEA-based post-combustion CO2 capture plant, we present a technical and economic analysis of several distinct modes of flexible operation. Using multi-period dynamic optimization techniques, we evaluate solvent storage, exhaust gas venting and time-varying solvent regeneration using average carbon intensity and profitability as key constraints and objective functions, respectively. Load following operation of the power plant with a tightly integrated capture plant is used as our base case scenario. We find that solvent storage is 4% more profitable than the base case, whereas exhaust gas venting is 17% more costly and appears incapable of meeting our decarbonisation targets. Time varying solvent regeneration is 16% more profitable than the base case and the electricity generated has an average carbon intensity which is approximately 5.5% lower than that of the base case. (C) 2014 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1525 / 1535
页数:11
相关论文
共 50 条
  • [1] Dynamic modelling and optimisation of flexible operation in post-combustion CO2 capture plants-A review
    Bui, Mai
    Gunawan, Indra
    Verheyen, Vincent
    Feron, Paul
    Meuleman, Erik
    Adeloju, Sam
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2014, 61 : 245 - 265
  • [2] Optimization of the various modes of flexible operation for post-combustion CO2 capture plant
    Zaman, Muhammad
    Lee, Jay H.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2015, 75 : 14 - 27
  • [3] Process control strategies for flexible operation of post-combustion CO2 capture plants
    Mechleri, Evgenia
    Lawal, Adekola
    Ramos, Alfredo
    Davison, John
    Mac Dowell, Niall
    [J]. INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2017, 57 : 14 - 25
  • [4] Dynamic Operation and Simulation of Post-Combustion CO2 Capture
    Gaspar, Jozsef
    Gladis, Arne
    Jorgensen, John Bagterp
    Thomsen, Kaj
    von Solms, Nicolas
    Fosbol, Philip Loldrup
    [J]. 8TH TRONDHEIM CONFERENCE ON CO2 CAPTURE, TRANSPORT AND STORAGE, 2016, 86 : 205 - 214
  • [5] Dynamic simulation of post-combustion CO2 capture for flexible operation of the Brindisi pilot plant
    Flo, Nina Enaasen
    Kvamsdal, Hanne Marie
    Hillestad, Magne
    [J]. INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2016, 48 : 204 - 215
  • [6] Optimal operation of flexible post-combustion CO2 capture in response to volatile electricity prices
    Cohen, Stuart M.
    Rochelle, Gary T.
    Webber, Michael E.
    [J]. 10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 2604 - 2611
  • [7] Nonlinear Model Predictive Control of Post-combustion CO2 Capture Process for Flexible Operation
    Jung, Howoun
    Lee, Jay H.
    [J]. IFAC PAPERSONLINE, 2022, 55 (07): : 435 - 440
  • [8] MODELING OF THE CO2 CAPTURE IN POST-COMBUSTION
    Amann, Jean-Marc
    Descamps, Cathy
    Kanniche, Mohamed
    Bouallou, Chakib
    [J]. SCIENTIFIC STUDY AND RESEARCH-CHEMISTRY AND CHEMICAL ENGINEERING BIOTECHNOLOGY FOOD INDUSTRY, 2007, 8 (01): : 77 - 90
  • [9] Overview Post-combustion CO2 capture
    Romeo, L. M.
    Bolea, I.
    [J]. BOLETIN DEL GRUPO ESPANOL DEL CARBON, 2015, (35): : 8 - 11
  • [10] Optimal design for flexible operation of the post-combustion CO2 capture plant with uncertain economic factors
    Zaman, Muhammad
    Jang, Hong
    Rizwan, Muhammad
    Lee, Jay H.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2016, 84 : 199 - 207