Optimisation of post-combustion CO2 capture for flexible operation

被引:31
|
作者
Mac Dowell, N. [1 ,2 ]
Shah, N. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Ctr Proc Syst Engn, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Ctr Environm Policy, London SW7 1NA, England
关键词
CCS; CO2; capture; flexible CCS; SC-PCC; amine-scrubbing; SAFT; rate-based modelling; dynamic optimisation; POWER-PLANTS; CCS; SOLVENT; COST; DESIGN;
D O I
10.1016/j.egypro.2014.11.162
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In order to accommodate the increasing penetration of intermittent renewable electricity generation capacity, it is becoming increasingly clear that decarbonized fossil-fired power plants will have to operate in a highly flexible fashion. In this study, using detailed mathematical models of a coal-fired power plant integrated with a MEA-based post-combustion CO2 capture plant, we present a technical and economic analysis of several distinct modes of flexible operation. Using multi-period dynamic optimization techniques, we evaluate solvent storage, exhaust gas venting and time-varying solvent regeneration using average carbon intensity and profitability as key constraints and objective functions, respectively. Load following operation of the power plant with a tightly integrated capture plant is used as our base case scenario. We find that solvent storage is 4% more profitable than the base case, whereas exhaust gas venting is 17% more costly and appears incapable of meeting our decarbonisation targets. Time varying solvent regeneration is 16% more profitable than the base case and the electricity generated has an average carbon intensity which is approximately 5.5% lower than that of the base case. (C) 2014 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1525 / 1535
页数:11
相关论文
共 50 条
  • [41] Chemical looping for pre-combustion and post-combustion CO2 capture
    Mantripragada, Hari C.
    Rubin, Edward S.
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 6403 - 6410
  • [42] CO2 Absorption/Desorption Enhanced by Nanoparticles in Post-combustion CO2 Capture
    Yu, W.
    Wang, T.
    Fang, M. X.
    Hei, H.
    Luo, Z. Y.
    CLEAN COAL TECHNOLOGY AND SUSTAINABLE DEVELOPMENT, 2016, : 591 - 596
  • [43] Hybrid membrane cryogenic process for post-combustion Co2 capture
    Belaissaoui, B.
    Le Moullec, Y.
    Willson, D.
    Favre, E.
    EUROMEMBRANE CONFERENCE 2012, 2012, 44 : 417 - 421
  • [44] DESIGN CHALLENGES FOR COMBINED CYCLES WITH POST-COMBUSTION CO2 CAPTURE
    Zachary, Justin
    PROCEEDINGS OF THE ASME TURBO EXPO 2009, VOL 1, 2009, : 881 - 890
  • [45] Evaluation of carbon nanoscroll materials for post-combustion CO2 capture
    Daff, Thomas D.
    Collins, Sean P.
    Dureckova, Hana
    Perim, Eric
    Skaf, Munir S.
    Galvao, Douglas S.
    Woo, Tom K.
    CARBON, 2016, 101 : 218 - 225
  • [46] Comparison of solvents for post-combustion capture of CO2 by chemical absorption
    Kothandaraman, Anusha
    Nord, Lars
    Bolland, Olav
    Herzog, Howard J.
    McRae, Gregory J.
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 1373 - 1380
  • [47] Benchmarking of the pre/post-combustion chemical absorption for the CO2 capture
    Dinca, Cristian
    Slavu, Nela
    Badea, Adrian
    JOURNAL OF THE ENERGY INSTITUTE, 2018, 91 (03) : 445 - 456
  • [48] Templated polymeric materials as adsorbents for the post-combustion capture of CO2
    Drage, Trevor C.
    Pevida, Covadonga
    Snape, Colin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [49] Deactivation causes of dry sorbents for post-combustion CO2 capture
    Cho, Min Sun
    Chae, Ho Jin
    Lee, Soo Chool
    Jo, Seong Bin
    Kim, Tae young
    Lee, Chul Ho
    Baek, Jeom-In
    Kim, Jae Chang
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2019, 57 (02): : 253 - 258
  • [50] Phase change ionic liquids for post-combustion CO2 capture
    Brennecke, Joan
    Seo, Samuel
    Simoni, Lluke
    Stadtherr, Mark
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249