Graph-regularized tensor robust principal component analysis for hyperspectral image denoising

被引:16
|
作者
Nie, Yongming [1 ]
Chen, Linsen [1 ]
Zhu, Hao [1 ]
Du, Sidan [1 ]
Yue, Tao [1 ]
Cao, Xun [1 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
FACTORIZATION; QUALITY; SPARSE; PCA;
D O I
10.1364/AO.56.006094
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we have developed a novel model that is named graph-regularized tensor robust principal component analysis (GTRPCA) for denoising hyperspectral images (HSIs). Incorporating spectral graph regularization into TRPCA makes the model more accurate by preserving local geometric structures embedded in a high-dimensional space. Based on tensor singular value decomposition (t-SVD), we introduce a general tensor-based altering direction method of multipliers (ADMM) algorithm which can solve the proposed model for denoising HSIs. Experiments on both the synthetic and real captured datasets have demonstrated the effectiveness of the proposed method. (C) 2017 Optical Society of America
引用
收藏
页码:6094 / 6102
页数:9
相关论文
共 50 条
  • [31] Hyperspectral Unmixing Using Graph-regularized and Sparsity-constrained Deep NMF
    Fang, Hao
    Li, Aihua
    Wang, Tao
    Chang, Hongwei
    Xu, Huoxi
    [J]. OPTICAL SENSING AND IMAGING TECHNOLOGIES AND APPLICATIONS, 2018, 10846
  • [32] Hyperspectral Image Spectral-Spatial Feature Extraction via Tensor Principal Component Analysis
    Ren, Yuemei
    Liao, Liang
    Maybank, Stephen John
    Zhang, Yanning
    Liu, Xin
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (09) : 1431 - 1435
  • [33] Image Denoising Using Multiresolution Principal Component Analysis
    Malini, S.
    Moni, R. S.
    [J]. 2015 GLOBAL CONFERENCE ON COMMUNICATION TECHNOLOGIES (GCCT), 2015, : 4 - 7
  • [34] ROBUST TENSOR PRINCIPAL COMPONENT ANALYSIS IN ALL MODES
    Chen, Longxi
    Liu, Yipeng
    Zhu, Ce
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,
  • [35] Convex–Concave Tensor Robust Principal Component Analysis
    Youfa Liu
    Bo Du
    Yongyong Chen
    Lefei Zhang
    Mingming Gong
    Dacheng Tao
    [J]. International Journal of Computer Vision, 2024, 132 : 1721 - 1747
  • [36] Hyperspectral image denoising using the robust low-rank tensor recovery
    Li, Chang
    Ma, Yong
    Huang, Jun
    Mei, Xiaoguang
    Ma, Jiayi
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2015, 32 (09) : 1604 - 1612
  • [37] Fuzzy Sparse Deviation Regularized Robust Principal Component Analysis
    Gao, Yunlong
    Lin, Tingting
    Pan, Jinyan
    Nie, Feiping
    Xie, Youwei
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 5645 - 5660
  • [38] Laplacian regularized robust principal component analysis for process monitoring
    Xiu, Xianchao
    Yang, Ying
    Kong, Lingchen
    Liu, Wanquan
    [J]. JOURNAL OF PROCESS CONTROL, 2020, 92 : 212 - 219
  • [39] Laplacian regularized robust principal component analysis for process monitoring
    Xiu, Xianchao
    Yang, Ying
    Kong, Lingchen
    Liu, Wanquan
    [J]. Journal of Process Control, 2020, 92 : 212 - 219
  • [40] Tensor Robust Principal Component Analysis with a New Tensor Nuclear Norm
    Lu, Canyi
    Feng, Jiashi
    Chen, Yudong
    Liu, Wei
    Lin, Zhouchen
    Yan, Shuicheng
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (04) : 925 - 938