Bayesian spatio-temporal modelling of anchovy abundance through the SPDE Approach

被引:4
|
作者
Quiroz, Zaida C. [1 ,2 ]
Prates, Marcos O. [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Stat, Belo Horizonte, MG, Brazil
[2] Pontificia Univ Catolica Peru, Dept Math, Lima, Peru
关键词
Bayesian method; GMRFs; Marine ecology; INLA; Spatio-temporal model; SPDEs; HUMBOLDT CURRENT SYSTEM; LATENT GAUSSIAN MODELS; SMALL PELAGIC FISH; PREDICTION;
D O I
10.1016/j.spasta.2018.08.005
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Peruvian anchovy is an important species from an ecological and economical perspective. Some important features to evaluate fisheries management are the relationship between the anchovy presence/ abundance and covariates with spatial and temporal dependencies accounted for, the nature of the behaviour of anchovy throughout space and time, and available spatio-temporal predictions. With these challenges in mind, we propose to use flexible Bayesian hierarchical spatio-temporal models for zero-inflated positive continuous data. These models are able to capture the spatial and temporal distribution of the anchovies, to make spatial predictions within the temporal range of the data and predictions about the near future. To make our modelling computationally feasible we use the stochastic partial differential equations (SPDE) approach combined with the integrated nested Laplace approximation (INLA) method. After balancing goodness of fit, interpretations of spatial effects across years, prediction ability, and computational costs, we suggest to use a model with a spatio-temporal structure. Our model provides a novel method to investigate the Peruvian anchovy dynamics across years, giving solid statistical support to many descriptive ecological studies. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:236 / 256
页数:21
相关论文
共 50 条
  • [41] Spatio-temporal stochastic modelling (METMAVI)
    Raquel Menezes
    A. Manuela Gonçalves
    Stochastic Environmental Research and Risk Assessment, 2014, 28 : 1167 - 1169
  • [42] Spatio-Temporal Modelling of Noise Pollution
    Napi, Nur Nazmi Liyana Mohd
    Zainal, Mohd Hafizul
    Abdullah, Samsuri
    Dom, Nazri Che
    Abu Mansor, Amalina
    Ahmed, Ali Najah
    Ismail, Marzuki
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2021, 13 (03): : 125 - 131
  • [43] Modelling spatio-temporal environmental data
    Rasinmäki, J
    ENVIRONMENTAL MODELLING & SOFTWARE, 2003, 18 (10) : 877 - 886
  • [44] Spatio-temporal stochastic modelling (METMAVI)
    Menezes, Raquel
    Manuela Goncalves, A.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2014, 28 (05) : 1167 - 1169
  • [45] Spatio-temporal modelling of hydro-meteorological derived risk using a Bayesian approach: a case study in Venezuela
    Villalta, D. E.
    de Guenni, L. Bravo
    Sajo-Castelli, A. M.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2020, 34 (3-4) : 513 - 529
  • [46] Modelling spatio-temporal variability of temperature
    Xiaofeng Cao
    Ostap Okhrin
    Martin Odening
    Matthias Ritter
    Computational Statistics, 2015, 30 : 745 - 766
  • [47] Spatio-temporal modelling of hydro-meteorological derived risk using a Bayesian approach: a case study in Venezuela
    D. E. Villalta
    L. Bravo de Guenni
    A. M. Sajo-Castelli
    Stochastic Environmental Research and Risk Assessment, 2020, 34 : 513 - 529
  • [48] Modelling of spatio-temporal variation of snowcover
    Schaumberger, Andreas
    Formayer, Herbert
    Tiefenbach, Priska
    Grillenberger, Joerg
    Strobl, Josef
    MITTEILUNGEN DER OSTERREICHISCHEN GEOGRAPHISCHEN GESELLSCHAFT, 2008, 150 : 163 - 182
  • [49] SPATIO-TEMPORAL MODELLING OF EXTREME STORMS
    Economou, Theodoros
    Stephenson, David B.
    Ferro, Christopher A. T.
    ANNALS OF APPLIED STATISTICS, 2014, 8 (04): : 2223 - 2246
  • [50] Modelling spatio-temporal variability of temperature
    Cao, Xiaofeng
    Okhrin, Ostap
    Odening, Martin
    Ritter, Matthias
    COMPUTATIONAL STATISTICS, 2015, 30 (03) : 745 - 766