Bayesian spatio-temporal modelling of anchovy abundance through the SPDE Approach

被引:4
|
作者
Quiroz, Zaida C. [1 ,2 ]
Prates, Marcos O. [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Stat, Belo Horizonte, MG, Brazil
[2] Pontificia Univ Catolica Peru, Dept Math, Lima, Peru
关键词
Bayesian method; GMRFs; Marine ecology; INLA; Spatio-temporal model; SPDEs; HUMBOLDT CURRENT SYSTEM; LATENT GAUSSIAN MODELS; SMALL PELAGIC FISH; PREDICTION;
D O I
10.1016/j.spasta.2018.08.005
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Peruvian anchovy is an important species from an ecological and economical perspective. Some important features to evaluate fisheries management are the relationship between the anchovy presence/ abundance and covariates with spatial and temporal dependencies accounted for, the nature of the behaviour of anchovy throughout space and time, and available spatio-temporal predictions. With these challenges in mind, we propose to use flexible Bayesian hierarchical spatio-temporal models for zero-inflated positive continuous data. These models are able to capture the spatial and temporal distribution of the anchovies, to make spatial predictions within the temporal range of the data and predictions about the near future. To make our modelling computationally feasible we use the stochastic partial differential equations (SPDE) approach combined with the integrated nested Laplace approximation (INLA) method. After balancing goodness of fit, interpretations of spatial effects across years, prediction ability, and computational costs, we suggest to use a model with a spatio-temporal structure. Our model provides a novel method to investigate the Peruvian anchovy dynamics across years, giving solid statistical support to many descriptive ecological studies. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:236 / 256
页数:21
相关论文
共 50 条
  • [31] Modelling drivers of trawl fisheries discards using Bayesian spatio-temporal models
    Soto, M.
    Fernandez-Peralta, L.
    Rey, J.
    Czerwisnki, I.
    Garcia-Cancela, R.
    Llope, M.
    Cabrera-Busto, J.
    Liebana, M.
    Pennino, M. G.
    FISHERIES RESEARCH, 2023, 268
  • [32] Bayesian latent variable modelling of multivariate spatio-temporal variation in cancer mortality
    Tzala, Evangelia
    Best, Nicky
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2008, 17 (01) : 97 - 118
  • [33] Climate variability and dengue fever in Makassar, Indonesia: Bayesian spatio-temporal modelling
    Aswi, Aswi
    Cramb, Susanna
    Duncan, Earl
    Hu, Wenbiao
    White, Gentry
    Mengersen, Kerrie
    SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2020, 33
  • [34] Data fusion in a two-stage spatio-temporal model using the INLA-SPDE approach
    Villejo, Stephen Jun
    Illian, Janine B.
    Swallow, Ben
    SPATIAL STATISTICS, 2023, 54
  • [35] A BAYESIAN SPATIO-TEMPORAL MODELING APPROACH TO THE INVERSE HEAT CONDUCTION PROBLEM
    Olabiyi, Ridwan
    Pandey, Hari
    Hu, Han
    Iquebal, Ashif
    PROCEEDINGS OF ASME 2023 HEAT TRANSFER SUMMER CONFERENCE, HT2023, 2023,
  • [36] Spatio-Temporal Instrumental Variables Regression with Missing Data: A Bayesian Approach
    Marcus L. Nascimento
    Kelly C. M. Gonçalves
    Mario Jorge Mendonça
    Computational Economics, 2023, 62 : 29 - 47
  • [37] A hierarchical Bayesian approach to the spatio-temporal modeling of air quality data
    Riccio, A
    Barone, G
    Chianese, E
    Giunta, G
    ATMOSPHERIC ENVIRONMENT, 2006, 40 (03) : 554 - 566
  • [38] Spatio-temporal analysis of plant pests in a greenhouse using a Bayesian approach
    Poncet, Christine
    Lemesle, Valerie
    Mailleret, Ludovic
    Bout, Alexandre
    Boll, Roger
    Vaglio, Joelle
    AGRICULTURAL AND FOREST ENTOMOLOGY, 2010, 12 (03) : 325 - 332
  • [39] Spatio-Temporal Instrumental Variables Regression with Missing Data: A Bayesian Approach
    Nascimento, Marcus L.
    Goncalves, Kelly C. M.
    Mendonca, Mario Jorge
    COMPUTATIONAL ECONOMICS, 2023, 62 (01) : 29 - 47
  • [40] Modelling spatio-temporal random fields
    Schmiegel, J
    Barndorff-Nielsen, OE
    Eggers, HC
    SOUTH AFRICAN JOURNAL OF SCIENCE, 2005, 101 (11-12) : 512 - 512