Polar foliations on symmetric spaces and mean curvature flow

被引:2
|
作者
Liu, Xiaobo [1 ,2 ]
Radeschi, Marco [3 ]
机构
[1] Peking Univ, Beijing Int Ctr Math Res, Beijing, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing, Peoples R China
[3] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
来源
关键词
SINGULAR RIEMANNIAN FOLIATIONS; ISOPARAMETRIC SUBMANIFOLDS; SPLITTING THEOREM;
D O I
10.1515/crelle-2022-0045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study polar foliations on simply connected symmetric spaces with non-negative curvature. We will prove that all such foliations are isoparametric as defined in [E. Heintze, X. Liu and C. Olmos, Isoparametric submanifolds and a Chevalley-type restriction theorem, Integrable systems, geometry, and topology, American Mathematical Society, Providence 2006, 151-190]. We will also prove a splitting theorem which, when leaves are compact, reduces the study of such foliations to polar foliations in compact simply connected symmetric spaces. Moreover, we will show that solutions to mean curvature flow of regular leaves in such foliations are always ancient solutions. This generalizes part of the results in [X. Liu and C.-L. Terng, Ancient solutions to mean curvature flow for isoparametric submanifolds, Math. Ann. 378 2020, 1-2, 289-315] for mean curvature flows of isoparametric submanifolds in spheres.
引用
收藏
页码:135 / 155
页数:21
相关论文
共 50 条
  • [21] Semisimplicity of indefinite extrinsic symmetric spaces and mean curvature
    Kath, Ines
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2012, 82 (01): : 121 - 127
  • [22] Semisimplicity of indefinite extrinsic symmetric spaces and mean curvature
    Ines Kath
    [J]. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2012, 82 : 121 - 127
  • [23] Scalar curvature estimates of constant mean curvature hypersurfaces in locally symmetric spaces
    Eudes L. de Lima
    Henrique F. de Lima
    Fábio R. dos Santos
    Marco A. L. Velásquez
    [J]. São Paulo Journal of Mathematical Sciences, 2019, 13 : 320 - 341
  • [24] Scalar curvature estimates of constant mean curvature hypersurfaces in locally symmetric spaces
    de Lima, Eudes L.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    Velasquez, Marco A. L.
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 320 - 341
  • [25] Deforming symplectomorphism of certain irreducible Hermitian symmetric spaces of compact type by mean curvature flow
    Lu, Guangcun
    Xiao, Bang
    [J]. JOURNAL OF SYMPLECTIC GEOMETRY, 2015, 13 (04) : 905 - 962
  • [26] Foliations by constant mean curvature tubes
    Mazzeo, R
    Pacard, F
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2005, 13 (04) : 633 - 670
  • [27] THE INVERSE MEAN CURVATURE FLOW IN RANK ONE SYMMETRIC SPACES OF NON-COMPACT TYPE
    Koike, Naoyuki
    Sakai, Yusuke
    [J]. KYUSHU JOURNAL OF MATHEMATICS, 2015, 69 (02) : 259 - 284
  • [28] THE MEAN CURVATURE OF TRANSVERSE KAHLER FOLIATIONS
    Dal Jung, Seoung
    Richardson, Ken
    [J]. DOCUMENTA MATHEMATICA, 2019, 24 : 995 - 1031
  • [29] Prescribing mean curvature vectors for foliations
    Schweitzer, P
    Walczak, PG
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2004, 48 (01) : 21 - 35
  • [30] Inverse mean curvature flow of rotationally symmetric hypersurfaces
    Brian Harvie
    [J]. Calculus of Variations and Partial Differential Equations, 2023, 62