Inverse mean curvature flow of rotationally symmetric hypersurfaces

被引:0
|
作者
Brian Harvie
机构
[1] National Taiwan University,National Center for Theoretical Sciences, Mathematics Division
关键词
53; 35;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the Inverse Mean Curvature Flow of a non-star-shaped, mean-convex embedded sphere in Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{n+1}$$\end{document} with symmetry about an axis and sufficiently long, thick necks exists for all time and homothetically converges to a round sphere as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \rightarrow \infty $$\end{document}. Our approach is based on a localized version of the parabolic maximum principle. We also present two applications of this result. The first is an extension of the Minkowski inequality to the corresponding non-star-shaped, mean-convex domains in Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{n+1}$$\end{document}. The second is a connection between IMCF and minimal surface theory. Based on previous work by Meeks and Yau (Math Z 179:151–168, 1982) and using foliations by IMCF, we establish embeddedness of the solution to Plateau’s problem and a finiteness property of stable immersed minimal disks for certain Jordan curves in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{3}$$\end{document}.
引用
收藏
相关论文
共 50 条