Inverse mean curvature flow of rotationally symmetric hypersurfaces

被引:0
|
作者
Brian Harvie
机构
[1] National Taiwan University,National Center for Theoretical Sciences, Mathematics Division
关键词
53; 35;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the Inverse Mean Curvature Flow of a non-star-shaped, mean-convex embedded sphere in Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{n+1}$$\end{document} with symmetry about an axis and sufficiently long, thick necks exists for all time and homothetically converges to a round sphere as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \rightarrow \infty $$\end{document}. Our approach is based on a localized version of the parabolic maximum principle. We also present two applications of this result. The first is an extension of the Minkowski inequality to the corresponding non-star-shaped, mean-convex domains in Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{n+1}$$\end{document}. The second is a connection between IMCF and minimal surface theory. Based on previous work by Meeks and Yau (Math Z 179:151–168, 1982) and using foliations by IMCF, we establish embeddedness of the solution to Plateau’s problem and a finiteness property of stable immersed minimal disks for certain Jordan curves in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{3}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Rotationally invariant hypersurfaces with constant mean curvature in the Heisenberg group Hn
    Ritore, Manuel
    Rosales, Cesar
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (04) : 703 - 720
  • [32] CLOSED HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN A SYMMETRIC MANIFOLD
    Xu, Hongwei
    Ren, Xin'an
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2008, 45 (03) : 747 - 756
  • [33] ON ROTATIONALLY SYMMETRICAL MEAN-CURVATURE FLOW
    DZIUK, G
    KAWOHL, B
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 93 (01) : 142 - 149
  • [34] Boundary value problems for rotationally symmetric mean curvature flows
    Matioc, Bogdan-Vasile
    [J]. ARCHIV DER MATHEMATIK, 2007, 89 (04) : 365 - 372
  • [35] Boundary value problems for rotationally symmetric mean curvature flows
    Bogdan-Vasile Matioc
    [J]. Archiv der Mathematik, 2007, 89 : 365 - 372
  • [36] Mean curvature flow of hypersurfaces in Einsteinnian manifold
    蔡开仁
    [J]. Science Bulletin, 1996, (07) : 616 - 616
  • [37] Mean curvature flow of hypersurfaces in Einsteinnian manifold
    Cai, KR
    [J]. CHINESE SCIENCE BULLETIN, 1996, 41 (07): : 616 - 616
  • [38] ON REGULARITY FOR MEAN-CURVATURE FLOW OF HYPERSURFACES
    ECKER, K
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1995, 3 (01): : 107 - 126
  • [39] Scalar curvature estimates of constant mean curvature hypersurfaces in locally symmetric spaces
    de Lima, Eudes L.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    Velasquez, Marco A. L.
    [J]. SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 320 - 341
  • [40] Scalar curvature estimates of constant mean curvature hypersurfaces in locally symmetric spaces
    Eudes L. de Lima
    Henrique F. de Lima
    Fábio R. dos Santos
    Marco A. L. Velásquez
    [J]. São Paulo Journal of Mathematical Sciences, 2019, 13 : 320 - 341