CloudNeo: a cloud pipeline for identifying patient-specific tumor neoantigens

被引:49
|
作者
Bais, Preeti [1 ]
Namburi, Sandeep [1 ]
Gatti, Daniel M. [2 ]
Zhang, Xinyu [1 ]
Chuang, Jeffrey H. [1 ,3 ]
机构
[1] Jackson Lab Genom Med, Farmington, CT 06030 USA
[2] Jackson Lab, 600 Main St, Bar Harbor, ME 04609 USA
[3] Univ Connecticut Hlth, Dept Genet & Genome Sci, Farmington, CT 06032 USA
基金
美国国家卫生研究院;
关键词
METASTATIC MELANOMA; CANCER; BLOCKADE;
D O I
10.1093/bioinformatics/btx375
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present CloudNeo, a cloud-based computational workflow for identifying patientspecific tumor neoantigens from next generation sequencing data. Tumor-specific mutant peptides can be detected by the immune system through their interactions with the human leukocyte antigen complex, and neoantigen presence has recently been shown to correlate with anti T-cell immunity and efficacy of checkpoint inhibitor therapy. However computing capabilities to identify neoantigens from genomic sequencing data are a limiting factor for understanding their role. This challenge has grown as cancer datasets become increasingly abundant, making them cumbersome to store and analyze on local servers. Our cloud-based pipeline provides scalable computation capabilities for neoantigen identification while eliminating the need to invest in local infrastructure for data transfer, storage or compute. The pipeline is a Common Workflow Language (CWL) implementation of human leukocyte antigen (HLA) typing using Polysolver or HLAminer combined with custom scripts for mutant peptide identification and NetMHCpan for neoantigen prediction. We have demonstrated the efficacy of these pipelines on Amazon cloud instances through the Seven Bridges Genomics implementation of the NCI Cancer Genomics Cloud, which provides graphical interfaces for running and editing, infrastructure for workflow sharing and version tracking, and access to TCGA data.
引用
收藏
页码:3110 / 3112
页数:3
相关论文
共 50 条
  • [41] The patient-specific anatomical articulator
    Azer, Shereen S.
    Kemper, Evan
    JOURNAL OF PROSTHETIC DENTISTRY, 2022, 128 (06): : 1158 - 1164
  • [42] Patient-specific surgical simulation
    Soler, Luc
    Marescaux, Jacques
    WORLD JOURNAL OF SURGERY, 2008, 32 (02) : 208 - 212
  • [43] Patient-specific antiplatelet therapy
    Conde, ID
    Kleiman, NS
    JOURNAL OF THROMBOSIS AND THROMBOLYSIS, 2004, 17 (01) : 63 - 77
  • [44] Development of cloud services for patient-specific simulations of blood flows through aortic valves
    Kaceniauskas, A.
    Pacevic, R.
    Starikovicius, V.
    Maknickas, A.
    Staskuniene, M.
    Davidavicius, G.
    ADVANCES IN ENGINEERING SOFTWARE, 2017, 103 : 57 - 64
  • [45] Theranostics and Patient-Specific Dosimetry
    Bednarz, Bryan
    SEMINARS IN RADIATION ONCOLOGY, 2023, 33 (03) : 317 - 326
  • [46] Patient-Specific Anatomical Modelling
    de Oliveira, Julia E. E.
    Giessler, Paul
    Deserno, Thomas M.
    2015 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2015,
  • [47] Patient-specific intracranial pressure
    Sagher, Oren
    JOURNAL OF NEUROSURGERY, 2014, 120 (04) : 891 - 891
  • [48] Patient-Specific Antiplatelet Therapy
    Ian D. Conde
    Neal S. Kleiman
    Journal of Thrombosis and Thrombolysis, 2004, 17 : 63 - 77
  • [49] Synthesis of Patient-Specific Nanomaterials
    Lazarovits, James
    Chen, Yih Yang
    Song, Fayi
    Ngo, Wayne
    Tavares, Anthony J.
    Zhang, Yi-Nan
    Audet, Julie
    Tang, Bo
    Lin, Qiaochu
    Tleugabulova, Mayra Cruz
    Wilhelm, Stefan
    Krieger, Jonathan R.
    Mallevaey, Thierry
    Chan, Warren C. W.
    NANO LETTERS, 2019, 19 (01) : 116 - 123