CloudNeo: a cloud pipeline for identifying patient-specific tumor neoantigens

被引:49
|
作者
Bais, Preeti [1 ]
Namburi, Sandeep [1 ]
Gatti, Daniel M. [2 ]
Zhang, Xinyu [1 ]
Chuang, Jeffrey H. [1 ,3 ]
机构
[1] Jackson Lab Genom Med, Farmington, CT 06030 USA
[2] Jackson Lab, 600 Main St, Bar Harbor, ME 04609 USA
[3] Univ Connecticut Hlth, Dept Genet & Genome Sci, Farmington, CT 06032 USA
基金
美国国家卫生研究院;
关键词
METASTATIC MELANOMA; CANCER; BLOCKADE;
D O I
10.1093/bioinformatics/btx375
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present CloudNeo, a cloud-based computational workflow for identifying patientspecific tumor neoantigens from next generation sequencing data. Tumor-specific mutant peptides can be detected by the immune system through their interactions with the human leukocyte antigen complex, and neoantigen presence has recently been shown to correlate with anti T-cell immunity and efficacy of checkpoint inhibitor therapy. However computing capabilities to identify neoantigens from genomic sequencing data are a limiting factor for understanding their role. This challenge has grown as cancer datasets become increasingly abundant, making them cumbersome to store and analyze on local servers. Our cloud-based pipeline provides scalable computation capabilities for neoantigen identification while eliminating the need to invest in local infrastructure for data transfer, storage or compute. The pipeline is a Common Workflow Language (CWL) implementation of human leukocyte antigen (HLA) typing using Polysolver or HLAminer combined with custom scripts for mutant peptide identification and NetMHCpan for neoantigen prediction. We have demonstrated the efficacy of these pipelines on Amazon cloud instances through the Seven Bridges Genomics implementation of the NCI Cancer Genomics Cloud, which provides graphical interfaces for running and editing, infrastructure for workflow sharing and version tracking, and access to TCGA data.
引用
收藏
页码:3110 / 3112
页数:3
相关论文
共 50 条
  • [21] Patient-specific tumor prognosis prediction via multimodality imaging
    Wasserman, R
    Acharya, R
    Sibata, C
    Shin, KH
    MEDICAL IMAGING 1996: PHYSIOLOGY AND FUNCTION FROM MULTIDIMENSIONAL IMAGES, 1996, 2709 : 468 - 479
  • [22] Patient-Specific Biomechanical Modeling of the Lung Tumor for Radiation Therapy
    Giroux, M.
    Ladjal, H.
    Beuve, M.
    Giraud, P.
    Shariat, B.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2017, 20 : 95 - 96
  • [23] PATIENT-SPECIFIC VIRTUAL REALITY SYSTEMS FOR BRAIN TUMOR SURGERY
    DiRaddo, Robert
    Tomanek, Boguslaw
    Laroche, Denis
    Delorme, Sebastien
    Del Maestro, Rolando
    NEURO-ONCOLOGY, 2009, 11 (05) : 698 - 698
  • [24] Potency of patient-specific Vaccines consisting of tumor stem cells
    Dillman, R
    Beutel, LD
    DePriest, C
    de Leon, C
    Schiltz, PM
    Selvan, SR
    Nayak, SK
    JOURNAL OF IMMUNOTHERAPY, 2004, 27 (06) : S21 - S21
  • [25] Discovery of Human Papilloma Virus and patient-specific neoantigens targeted by CD8+T cells in HNSCC
    Makani, Venkata Krishna Kanth
    Li, Housaiyin
    Kulkarni, Aditi
    Arshad, Sanya
    Vujanovic, Lazar
    Ferris, Robert L.
    Joglekar, Alok V.
    JOURNAL OF IMMUNOLOGY, 2023, 210 (01):
  • [27] A Novel Machine Learning Model for Identifying Patient-Specific Cancer Driver Genes
    Jung, Heewon
    Choi, Jonghwan
    Park, Jiwoo
    Ahn, Jaegyoon
    IEEE ACCESS, 2022, 10 : 54245 - 54253
  • [28] Classification of patient-specific sensitivity to immunotherapies by ex vivo tumor testing
    Ceton, Lieke Johanna
    Montero, Marta Garcia
    Grillet, Fanny
    van der Meer, Dieudonne J.
    Vader, Willemijn
    van Altena, Anne
    de Kroon, Cor D.
    Ottevanger, Nelleke
    Kroep, Judith
    CANCER RESEARCH, 2023, 83 (07)
  • [29] Modeling of Tumor Growth with Input from Patient-Specific Metabolomic Data
    Miller, Hunter A.
    Lowengrub, John
    Frieboes, Hermann B.
    ANNALS OF BIOMEDICAL ENGINEERING, 2022, 50 (03) : 314 - 329
  • [30] Patient-specific Finite Element Model of a Spinal Tumor for Thermal Ablation
    Ding, Jinli
    Nan, Qun
    Liu, Youjun
    APPLIED MECHANICS AND MECHANICAL ENGINEERING II, PTS 1 AND 2, 2012, 138-139 : 937 - 940