Topology-Aware Convolutional Neural Network for Efficient Skeleton-Based Action Recognition

被引:0
|
作者
Xu, Kailin [1 ,2 ]
Ye, Fanfan [2 ]
Zhong, Qiaoyong [2 ]
Xie, Di [2 ]
机构
[1] Zhejiang Univ, Hangzhou, Peoples R China
[2] Hikvis Res Inst, Hangzhou, Peoples R China
来源
THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE | 2022年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the context of skeleton-based action recognition, graph convolutional networks (GCNs) have been rapidly developed, whereas convolutional neural networks (CNNs) have received less attention. One reason is that CNNs are considered poor in modeling the irregular skeleton topology. To alleviate this limitation, we propose a pure CNN architecture named Topology-aware CNN (Ta-CNN) in this paper. In particular, we develop a novel cross-channel feature augmentation module, which is a combo of map-attend-group-map operations. By applying the module to the coordinate level and the joint level subsequently, the topology feature is effectively enhanced. Notably, we theoretically prove that graph convolution is a special case of normal convolution when the joint dimension is treated as channels. This confirms that the topology modeling power of GCNs can also be implemented by using a CNN. Moreover, we creatively design a SkeletonMix strategy which mixes two persons in a unique manner and further boosts the performance. Extensive experiments are conducted on four widely used datasets, i.e. N-UCLA, SBU, NTU RGB+D and NTU RGB+D 120 to verify the effectiveness of Ta-CNN. We surpass existing CNN-based methods significantly. Compared with leading GCN-based methods, we achieve comparable performance with much less complexity in terms of the required GFLOPs and parameters.
引用
收藏
页码:2866 / 2874
页数:9
相关论文
共 50 条
  • [31] Relation Selective Graph Convolutional Network for Skeleton-Based Action Recognition
    Yang, Wenjie
    Zhang, Jianlin
    Cai, Jingju
    Xu, Zhiyong
    SYMMETRY-BASEL, 2021, 13 (12):
  • [32] EARLY FUSION GRAPH CONVOLUTIONAL NETWORK FOR SKELETON-BASED ACTION RECOGNITION
    Zhao, Xiaoxue
    Liu, Cuiwei
    Shi, Xiangbin
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [33] Selective directed graph convolutional network for skeleton-based action recognition
    Ke, Chengyuan
    Liu, Sheng
    Feng, Yuan
    Chen, Shengyong
    PATTERN RECOGNITION LETTERS, 2025, 190 : 141 - 146
  • [34] Multi-scale spatial–temporal convolutional neural network for skeleton-based action recognition
    Qin Cheng
    Jun Cheng
    Ziliang Ren
    Qieshi Zhang
    Jianming Liu
    Pattern Analysis and Applications, 2023, 26 (3) : 1303 - 1315
  • [35] Scale Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition
    Wang X.
    Zhong Y.
    Jin L.
    Xiao Y.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2022, 55 (03): : 306 - 312
  • [36] Feature reconstruction graph convolutional network for skeleton-based action recognition
    Huang, Junhao
    Wang, Ziming
    Peng, Jian
    Huang, Feihu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [37] Temporal Refinement Graph Convolutional Network for Skeleton-Based Action Recognition
    Zhuang T.
    Qin Z.
    Ding Y.
    Deng F.
    Chen L.
    Qin Z.
    Raymond Choo K.-K.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (04): : 1586 - 1598
  • [38] Skeleton Based Action Recognition with Convolutional Neural Network
    Du, Yong
    Fu, Yun
    Wang, Liang
    PROCEEDINGS 3RD IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION ACPR 2015, 2015, : 579 - 583
  • [39] Skeleton-based human action recognition using LSTM and depthwise separable convolutional neural network
    Le, Hoangcong
    Lu, Cheng-Kai
    Hsu, Chen-Chien
    Huang, Shao-Kang
    APPLIED INTELLIGENCE, 2025, 55 (04)
  • [40] EchoGCN: An Echo Graph Convolutional Network for Skeleton-Based Action Recognition
    Qian, Weiwen
    Huang, Qian
    Li, Chang
    Chen, Zhongqi
    Mao, Yingchi
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), (245-261):