Relation Selective Graph Convolutional Network for Skeleton-Based Action Recognition

被引:5
|
作者
Yang, Wenjie [1 ,2 ,3 ]
Zhang, Jianlin [2 ,3 ]
Cai, Jingju [2 ,3 ]
Xu, Zhiyong [2 ,3 ]
机构
[1] Chinese Acad Sci, Key Lab Opt Engn, Chengdu 610209, Peoples R China
[2] Chinese Acad Sci, Inst Opt & Elect, Chengdu 610209, Peoples R China
[3] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 12期
关键词
human skeleton; action recognition; graph convolutional networks;
D O I
10.3390/sym13122275
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graph convolutional networks (GCNs) have made significant progress in the skeletal action recognition task. However, the graphs constructed by these methods are too densely connected, and the same graphs are used repeatedly among channels. Redundant connections will blur the useful interdependencies of joints, and the overly repetitive graphs among channels cannot handle changes in joint relations between different actions. In this work, we propose a novel relation selective graph convolutional network (RS-GCN). We also design a trainable relation selection mechanism. It encourages the model to choose solid edges to work and build a stable and sparse topology of joints. The channel-wise graph convolution and multiscale temporal convolution are proposed to strengthening the model's representative power. Furthermore, we introduce an asymmetrical module named the spatial-temporal attention module for more stable context modeling. Combining those changes, our model achieves state-of-the-art performance on three public benchmarks, namely NTU-RGB+D, NTU-RGB+D 120, and Northwestern-UCLA.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Convolutional relation network for skeleton-based action recognition
    Zhu, Jiagang
    Zou, Wei
    Zhu, Zheng
    Hu, Yiming
    [J]. NEUROCOMPUTING, 2019, 370 : 109 - 117
  • [2] Skeleton-Based Action Recognition with Shift Graph Convolutional Network
    Cheng, Ke
    Zhang, Yifan
    He, Xiangyu
    Chen, Weihan
    Cheng, Jian
    Lu, Hanqing
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 180 - 189
  • [3] A lightweight graph convolutional network for skeleton-based action recognition
    Dinh-Tan Pham
    Quang-Tien Pham
    Tien-Thanh Nguyen
    Thi-Lan Le
    Hai Vu
    [J]. Multimedia Tools and Applications, 2023, 82 : 3055 - 3079
  • [4] Ghost Graph Convolutional Network for Skeleton-based Action Recognition
    Jang, Sungjun
    Lee, Heansung
    Cho, Suhwan
    Woo, Sungmin
    Lee, Sangyoun
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-ASIA (ICCE-ASIA), 2021,
  • [5] Shallow Graph Convolutional Network for Skeleton-Based Action Recognition
    Yang, Wenjie
    Zhang, Jianlin
    Cai, Jingju
    Xu, Zhiyong
    [J]. SENSORS, 2021, 21 (02) : 1 - 14
  • [6] Shuffle Graph Convolutional Network for Skeleton-Based Action Recognition
    Yu, Qiwei
    Dai, Yaping
    Hirota, Kaoru
    Shao, Shuai
    Dai, Wei
    [J]. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2023, 27 (05) : 790 - 800
  • [7] A lightweight graph convolutional network for skeleton-based action recognition
    Pham, Dinh-Tan
    Pham, Quang-Tien
    Nguyen, Tien-Thanh
    Le, Thi-Lan
    Vu, Hai
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (02) : 3055 - 3079
  • [8] Feedback Graph Convolutional Network for Skeleton-Based Action Recognition
    Yang, Hao
    Yan, Dan
    Zhang, Li
    Sun, Yunda
    Li, Dong
    Maybank, Stephen J.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 164 - 175
  • [9] Hierarchical Graph Convolutional Network for Skeleton-Based Action Recognition
    Huang, Linjiang
    Huang, Yan
    Ouyang, Wanli
    Wang, Liang
    [J]. IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 93 - 102
  • [10] EARLY FUSION GRAPH CONVOLUTIONAL NETWORK FOR SKELETON-BASED ACTION RECOGNITION
    Zhao, Xiaoxue
    Liu, Cuiwei
    Shi, Xiangbin
    [J]. 2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,