Global well-posedness of the three dimensional incompressible anisotropic Navier-Stokes system

被引:4
|
作者
Yan, Kai [1 ]
Yin, Zhaoyang [2 ,3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[3] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
关键词
Anisotropic Navier-Stokes system; Global well-posedness; Besov-Sobolev spaces; EQUATIONS; REGULARITY; FLUIDS;
D O I
10.1016/j.nonrwa.2016.03.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the global well-posed problem for the three dimensional incompressible anisotropic Navier-Stokes system (ANS) with initial data in the scaling invariant Besov-Sobolev type spaces. We prove that (ANS) has a unique global solution provided that the initial vertical velocity is large while initial horizontal data are sufficiently small compared with the horizontal viscosity. In particular, our result implies the global well-posedness of (ANS) with highly oscillating initial data. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:52 / 73
页数:22
相关论文
共 50 条