Flat connections and cohomology invariants

被引:2
|
作者
Biswas, Indranil [1 ]
Castrillon Lopez, Marco [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Bombay 400005, Maharashtra, India
[2] Univ Complutense Madrid, Fac Ciencias Matemat, Dept Geometria & Topol, ICMAT,CSIC,UAM,UCM,UC3M, E-28040 Madrid, Spain
关键词
Principal bundle; flat connection; characteristic form; cohomology invariants; BUNDLE;
D O I
10.1002/mana.201600328
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this article is to construct some geometric invariants for the topology of the set. of flat connections on a principal. G-bundle P -> M Although the characteristic classes of principal bundles are trivial when F not equal empty set, their classical Chern-Weil construction can still be exploited to define a homomorphism from the set of homology classes of maps S -> F to the cohomology group H2(r-k) (M, R), where.. is null-cobordant (k-1)-manifold, once a.. -invariant polynomial p of degree r on Lie(G) is fixed. For S = S = Sk-1, this gives a homomorphism pi(k-1)(F) -> H2r-k (M, R). The map is shown to be globally gauge invariant and furthermore it descends to the moduli space of flat connections. /Gau.., modulo cohomology with integer coefficients. The construction is also adapted to complex manifolds. In this case, one works with the set F-0,F-2 of connections with vanishing (0, 2)-part of the curvature, and the Dolbeault cohomology. Some examples and applications are presented.
引用
收藏
页码:2170 / 2184
页数:15
相关论文
共 50 条
  • [41] On Flat and Gorenstein Flat Dimensions of Local Cohomology Modules
    Zargar, Majid Rahro
    Zakeri, Hossein
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (02): : 403 - 416
  • [42] Reduction, Donaldson invariants and quantum cohomology ring
    Bershadsky, M
    NUCLEAR PHYSICS B, 1996, : 49 - 55
  • [43] Invariants, cohomology, and automorphic forms of higher order
    Deitmar, Anton
    SELECTA MATHEMATICA-NEW SERIES, 2012, 18 (04): : 855 - 883
  • [44] Filtrations on combinatorial intersection cohomology and invariants of subdivisions
    Tsang, Ling Hei
    ADVANCES IN MATHEMATICS, 2022, 409
  • [45] Hochschild Cohomology of skew group rings and invariants
    Marcos, E. N.
    Martinez-Villa, R.
    Martins, Ma. I. R.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2004, 2 (02): : 177 - 190
  • [46] Invariants, cohomology, and automorphic forms of higher order
    Anton Deitmar
    Selecta Mathematica, 2012, 18 : 855 - 883
  • [47] COHOMOLOGY OPERATIONS DERIVED FROM MODULAR INVARIANTS
    MUI, H
    MATHEMATISCHE ZEITSCHRIFT, 1986, 193 (01) : 151 - 163
  • [48] Weights on cohomology, invariants of singularities, and dual complexes
    Arapura, Donu
    Bakhtary, Parsa
    Wlodarczyk, Jaroslaw
    MATHEMATISCHE ANNALEN, 2013, 357 (02) : 513 - 550
  • [49] Gromov-Witten invariants and quantum cohomology
    Mukherjee, Amiya
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (04): : 459 - 475
  • [50] Eta invariants for flat manifolds
    A. Szczepański
    Annals of Global Analysis and Geometry, 2012, 41 : 125 - 138