Flat connections and cohomology invariants

被引:2
|
作者
Biswas, Indranil [1 ]
Castrillon Lopez, Marco [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Bombay 400005, Maharashtra, India
[2] Univ Complutense Madrid, Fac Ciencias Matemat, Dept Geometria & Topol, ICMAT,CSIC,UAM,UCM,UC3M, E-28040 Madrid, Spain
关键词
Principal bundle; flat connection; characteristic form; cohomology invariants; BUNDLE;
D O I
10.1002/mana.201600328
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main goal of this article is to construct some geometric invariants for the topology of the set. of flat connections on a principal. G-bundle P -> M Although the characteristic classes of principal bundles are trivial when F not equal empty set, their classical Chern-Weil construction can still be exploited to define a homomorphism from the set of homology classes of maps S -> F to the cohomology group H2(r-k) (M, R), where.. is null-cobordant (k-1)-manifold, once a.. -invariant polynomial p of degree r on Lie(G) is fixed. For S = S = Sk-1, this gives a homomorphism pi(k-1)(F) -> H2r-k (M, R). The map is shown to be globally gauge invariant and furthermore it descends to the moduli space of flat connections. /Gau.., modulo cohomology with integer coefficients. The construction is also adapted to complex manifolds. In this case, one works with the set F-0,F-2 of connections with vanishing (0, 2)-part of the curvature, and the Dolbeault cohomology. Some examples and applications are presented.
引用
收藏
页码:2170 / 2184
页数:15
相关论文
共 50 条
  • [21] NUMERICAL INVARIANTS FOR EQUIVARIANT COHOMOLOGY
    Duflot, Jeanne
    QUARTERLY JOURNAL OF MATHEMATICS, 2013, 64 (03): : 665 - 720
  • [22] HALF DENSITY QUANTIZATION OF THE MODULI SPACE OF FLAT CONNECTIONS AND WITTEN SEMICLASSICAL MANIFOLD INVARIANTS
    JEFFREY, LC
    WEITSMAN, J
    TOPOLOGY, 1993, 32 (03) : 509 - 529
  • [23] FLAT CONNECTIONS, GEOMETRIC INVARIANTS AND ENERGY OF HARMONIC-FUNCTIONS ON COMPACT RIEMANN SURFACES
    GURUPRASAD, K
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1995, 105 (01): : 23 - 29
  • [24] Purity for flat cohomology
    Cesnavicius, Kestutis
    Scholze, Peter
    ANNALS OF MATHEMATICS, 2024, 199 (01) : 51 - 180
  • [25] Delocalized eta invariants, cyclic cohomology and higher rho invariants
    Chen, Xiaoman
    Wang, Jinmin
    Xie, Zhizhang
    Yu, Guoliang
    ANNALS OF K-THEORY, 2023, 8 (04) : 531 - 608
  • [26] Projectively flat connections and flat connections on homogeneous spaces
    Urakawa, Hajime
    HOKKAIDO MATHEMATICAL JOURNAL, 2010, 39 (02) : 139 - 155
  • [27] Holonomy braidings, biquandles and quantum invariants of links with SL2(C) flat connections
    Blanchet, Christian
    Geer, Nathan
    Patureau-Mirand, Bertrand
    Reshetikhin, Nicolai
    SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (02):
  • [28] On the invariants of the cohomology of complements of Coxeter arrangements
    Douglass, J. Matthew
    Pfeiffer, Gotz
    Roehrle, Gerhard
    JOURNAL OF ALGEBRA, 2020, 558 : 336 - 349
  • [29] BIRATIONAL INVARIANTS VIA COHOMOLOGY THEORIES
    VIALE, LB
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (12): : 1259 - 1262
  • [30] Baer Invariants and Cohomology of Precrossed Modules
    Arias, Daniel
    Ladra, Manuel
    APPLIED CATEGORICAL STRUCTURES, 2014, 22 (01) : 289 - 304