tunnelling;
fundamental group;
complex trajectories;
semiclassical analysis;
PATH-INTEGRALS;
DOUBLE WELLS;
TIME PATH;
EIGENVALUES;
INSTANTONS;
D O I:
10.1088/1751-8121/aa8c67
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
The topology of complex classical paths is investigated to discuss quantum tunnelling splittings in one-dimensional systems. Here the Hamiltonian is assumed to be given as polynomial functions, so the fundamental group for the Riemann surface provides complete information on the topology of complex paths, which allows us to enumerate all the possible candidates contributing to the semiclassical sum formula for tunnelling splittings. This naturally leads to action relations among classically disjoined regions, revealing entirely non-local nature in the quantization condition. The importance of the proper treatment of Stokes phenomena is also discussed in Hamiltonians in the normal form.
机构:
Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USAOld Dominion Univ, Dept Phys, Norfolk, VA 23529 USA
Carrillo-Bernal, M. A.
Martinez-y-Romero, R. P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nacl Autonoma Mexico, Fac Ciencias, Apartado Postal 50-542, Mexico City 04510, DF, MexicoOld Dominion Univ, Dept Phys, Norfolk, VA 23529 USA
Martinez-y-Romero, R. P.
Nunez-Yepez, H. N.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Metropolitana, Unidad Iztapalapa, Dept Fis, Apartado Postal 55-534, Mexico City 09340, DF, MexicoOld Dominion Univ, Dept Phys, Norfolk, VA 23529 USA
Nunez-Yepez, H. N.
Salas-Brito, A. L.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Metropolitana, Unidad Azcapotzalco, Dept Ciencias Basicas, Apartado Postal 21-267, Mexico City 04000, DF, MexicoOld Dominion Univ, Dept Phys, Norfolk, VA 23529 USA
Salas-Brito, A. L.
Solis, Didier A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Yucatan, Fac Matemat, Merida 13615, Yucatan, MexicoOld Dominion Univ, Dept Phys, Norfolk, VA 23529 USA