Riemann surfaces of complex classical trajectories and tunnelling splitting in one-dimensional systems

被引:7
|
作者
Harada, Hiromitsu [1 ]
Mouchet, Amaury [2 ]
Shudo, Akira [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Phys, Hachioji, Tokyo 1920397, Japan
[2] Univ Francois Rabelais Tours, CNRS, UMR 7350, Lab Math & Phys Theor,Federat Denis Poisson, Parc Grandmont, F-37200 Tours, France
关键词
tunnelling; fundamental group; complex trajectories; semiclassical analysis; PATH-INTEGRALS; DOUBLE WELLS; TIME PATH; EIGENVALUES; INSTANTONS;
D O I
10.1088/1751-8121/aa8c67
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The topology of complex classical paths is investigated to discuss quantum tunnelling splittings in one-dimensional systems. Here the Hamiltonian is assumed to be given as polynomial functions, so the fundamental group for the Riemann surface provides complete information on the topology of complex paths, which allows us to enumerate all the possible candidates contributing to the semiclassical sum formula for tunnelling splittings. This naturally leads to action relations among classically disjoined regions, revealing entirely non-local nature in the quantization condition. The importance of the proper treatment of Stokes phenomena is also discussed in Hamiltonians in the normal form.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] RANDOM ONE-DIMENSIONAL CLASSICAL MAGNET
    KRZEMINSKI, S
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1977, 80 (02): : 651 - 656
  • [42] One-dimensional local families of complex K3 surfaces
    Carini, Riccardo
    Vigano, Francesco
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (01) : 296 - 305
  • [43] Solution of classical stochastic one-dimensional many-body systems
    Bares, PA
    Mobilia, M
    PHYSICAL REVIEW LETTERS, 1999, 83 (25) : 5214 - 5217
  • [44] On Relations between One-Dimensional Quantum and Two-Dimensional Classical Spin Systems
    Hutchinson, J.
    Keating, J. P.
    Mezzadri, F.
    ADVANCES IN MATHEMATICAL PHYSICS, 2015, 2015
  • [45] Thermodynamics of trajectories of the one-dimensional Ising model
    Loscar, Ernesto S.
    Mey, Antonia S. J. S.
    Garrahan, Juan P.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [46] Solution to the Riemann problem in a one-dimensional magnetogasdynamic flow
    Sekhar, T. Raja
    Sharma, V. D.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2012, 89 (02) : 200 - 216
  • [47] One-dimensional Riemann solvers and the maximum entropy closure
    Brunner, TA
    Holloway, JP
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2001, 69 (05): : 543 - 566
  • [48] A one-dimensional embedding complex
    Scannell, KP
    Sinha, DP
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 170 (01) : 93 - 107
  • [49] Light propagation in one-dimensional porous silicon complex systems
    Oton, CJ
    Dal Negro, L
    Gaburro, Z
    Pavesi, L
    Johnson, PJ
    Lagendijk, A
    Wiersma, DS
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2003, 197 (01): : 298 - 302
  • [50] Governing soliton splitting in one-dimensional lattices
    Fratalocchi, A
    Assanto, G
    PHYSICAL REVIEW E, 2006, 73 (04):