On Gaussian Markov random fields and Bayesian disease mapping

被引:69
|
作者
MacNab, Ying C. [1 ,2 ]
机构
[1] British Columbia Child & Family Res Inst, Vancouver, BC V6H 3V4, Canada
[2] Univ British Columbia, Div Epidemiol & Biostat, Sch Populat & Publ Hlth, Vancouver, BC V5Z 1M9, Canada
基金
加拿大健康研究院;
关键词
ECOLOGICAL REGRESSION; MODELS; ERRORS;
D O I
10.1177/0962280210371561
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
We discuss the nature of Gaussian Markov random fields (GMRFs) as they are typically formulated via full conditionals, also named conditional autoregressive or CAR formulations, to represent small area relative risks ensemble priors within a Bayesian hierarchical model framework for statistical inference in disease mapping and spatial regression. We present a partial review on GMRF/CAR and multivariate GMRF prior formulations in univariate and multivariate disease mapping models and communicate insights into various prior characteristics for representing disease risks variability and 'spatial interaction.' We also propose convolution prior modifications to the well known BYM model for attainment of identifiability and Bayesian robustness in univariate and multivariate disease mapping and spatial regression. Several illustrative examples of disease mapping and spatial regression are presented.
引用
收藏
页码:49 / 68
页数:20
相关论文
共 50 条
  • [41] Maximum a posteriori estimation for Markov chains based on Gaussian Markov random fields
    Wu, H.
    Noe, F.
    [J]. ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 1659 - 1667
  • [42] A Gaussian random field model for similarity-based smoothing in Bayesian disease mapping
    Baptista, Helena
    Mendes, Jorge M.
    MacNab, Ying C.
    Xavier, Miguel
    Caldas-de-Almeida, Jose
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (04) : 1166 - 1184
  • [43] 3D Bayesian regularization of diffusion tensor MRI using multivariate Gaussian Markov random fields
    Martín-Fernández, M
    Westin, CF
    Alberola-López, C
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2004, PT 1, PROCEEDINGS, 2004, 3216 : 351 - 359
  • [44] A BAYESIAN HIERARCHICAL SPATIAL MODEL FOR DENTAL CARIES ASSESSMENT USING NON-GAUSSIAN MARKOV RANDOM FIELDS
    Jin, Ick Hoon
    Yuan, Ying
    Bandyopadhyay, Dipankar
    [J]. ANNALS OF APPLIED STATISTICS, 2016, 10 (02): : 884 - 905
  • [45] Unified Terrain Mapping Model With Markov Random Fields
    Tse, Rina
    Ahmed, Nisar R.
    Campbell, Mark
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2015, 31 (02) : 290 - 306
  • [46] Some recent work on multivariate Gaussian Markov random fields
    MacNab, Ying C.
    [J]. TEST, 2018, 27 (03) : 497 - 541
  • [47] Parallel exact sampling and evaluation of Gaussian Markov random fields
    Steinsland, Ingelin
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (06) : 2969 - 2981
  • [48] Segmentation of Rumex obtusifolius using Gaussian Markov random fields
    Hiremath, Santosh
    Tolpekin, Valentyn A.
    van der Heijden, Gerie
    Stein, Alfred
    [J]. MACHINE VISION AND APPLICATIONS, 2013, 24 (04) : 845 - 854
  • [49] Sampling Strategies for Fast Updating of Gaussian Markov Random Fields
    Brown, D. Andrew
    McMahan, Christopher S.
    Self, Stella Watson
    [J]. AMERICAN STATISTICIAN, 2021, 75 (01): : 52 - 65
  • [50] Spatial Sensor Selection via Gaussian Markov Random Fields
    Nguyen, Linh V.
    Kodagoda, Sarath
    Ranasinghe, Ravindra
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (09): : 1226 - 1239