Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing

被引:232
|
作者
Xu, Xiaoshu [1 ]
Chemparathy, Augustine [1 ]
Zeng, Leiping [1 ]
Kempton, Hannah R. [1 ]
Shang, Stephen [1 ]
Nakamura, Muneaki [1 ]
Qi, Lei S. [1 ,2 ,3 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem & Syst Biol, Stanford, CA 94305 USA
[3] Stanford Univ, ChEM H, Stanford, CA 94305 USA
关键词
STRUCTURAL BASIS; DNA; ENDONUCLEASE; MUTAGENESIS; PLATFORM; CPF1; BASE;
D O I
10.1016/j.molcel.2021.08.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Compact and versatile CRISPR-Cas systems will enable genome engineering applications through high-efficiency delivery in a wide variety of contexts. Here, we create an efficient miniature Cas system (CasMINI) engineered from the type V-F Cas12f (Cas14) system by guide RNA and protein engineering, which is less than half the size of currently used CRISPR systems (Cas9 or Cas12a). We demonstrate that CasMINI can drive high levels of gene activation (up to thousands-fold increases), while the natural Cas12f system fails to function in mammalian cells. We show that the CasMINI system has comparable activities to Cas12a for gene activation, is highly specific, and allows robust base editing and gene editing. We expect that CasMINI can be broadly useful for cell engineering and gene therapy applications ex vivo and in vivo.
引用
收藏
页码:4333 / +
页数:18
相关论文
共 50 条
  • [41] CRISPR-Cas for genome editing: Classification, mechanism, designing and applications
    Bhatia, Simran
    Pooja, Sudesh Kumar
    Yadav, Sudesh Kumar
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 238
  • [42] CRISPR-Cas nucleases and base editors for plant genome editing
    Gurel, Filiz
    Zhang, Yingxiao
    Sretenovic, Simon
    Qi, Yiping
    ABIOTECH, 2020, 1 (01) : 74 - 87
  • [43] CRISPR-Cas Genome Editing in Ex Vivo Human Lungs
    Mesaki, K.
    Yamamoto, H.
    Juvet, S.
    Yeung, J.
    Guan, Z.
    Yao, Y.
    Chen, M.
    Gokhale, H.
    Shan, H.
    Wang, A.
    Wilson, G.
    Mariscal, A.
    Hu, J.
    Davidson, A.
    Kleinstiver, B.
    Cypel, M.
    Liu, M.
    Keshavjee, S.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2024, 43 (04): : S13 - S14
  • [44] CRISPR-Cas systems: ushering in the new genome editing era
    Rojo, Fernando Perez
    Nyman, Rikard Karl Martin
    Johnson, Alexander Arthur Theodore
    Navarro, Maria Pazos
    Ryan, Megan Helen
    Erskine, William
    Kaur, Parwinder
    BIOENGINEERED, 2018, 9 (01) : 214 - 221
  • [45] CRISPR-Cas nucleases and base editors for plant genome editing
    Filiz Gürel
    Yingxiao Zhang
    Simon Sretenovic
    Yiping Qi
    aBIOTECH, 2020, 1 : 74 - 87
  • [46] Exploiting CRISPR-Cas immune systems for genome editing in bacteria
    Barrangou, Rodolphe
    van Pijkeren, Jan-Peter
    CURRENT OPINION IN BIOTECHNOLOGY, 2016, 37 : 61 - 68
  • [47] Diversification of the CRISPR Toolbox: Applications of CRISPR-Cas Systems Beyond Genome Editing
    Balderston, Sarah
    Clouse, Gabrielle
    Ripoll, Juan-Jose
    Pratt, Grace K.
    Gasiunas, Giedrius
    Bock, Jens-Ole
    Bennett, Eric Paul
    Aran, Kiana
    CRISPR JOURNAL, 2021, 4 (03): : 400 - 415
  • [48] Using an Endogenous CRISPR-Cas System for Genome Editing in the Human Pathogen Clostridium difficile
    Maikova, Anna
    Kreis, Victor
    Boutserin, Anais
    Severinov, Konstantin
    Soutourina, Olga
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2019, 85 (20)
  • [49] Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus
    Hidalgo-Cantabrana, Claudio
    Goh, Yong Jun
    Pan, Meichen
    Sanozky-Dawes, Rosemary
    Barrangou, Rodolphe
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (32) : 15774 - 15783
  • [50] CRISPR-Cas genome editing system: A versatile tool for developing disease resistant crops
    Talakayala, Ashwini
    Ankanagari, Srinivas
    Garladinne, Mallikarjuna
    PLANT STRESS, 2022, 3