Engineered miniature CRISPR-Cas system for mammalian genome regulation and editing

被引:232
|
作者
Xu, Xiaoshu [1 ]
Chemparathy, Augustine [1 ]
Zeng, Leiping [1 ]
Kempton, Hannah R. [1 ]
Shang, Stephen [1 ]
Nakamura, Muneaki [1 ]
Qi, Lei S. [1 ,2 ,3 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem & Syst Biol, Stanford, CA 94305 USA
[3] Stanford Univ, ChEM H, Stanford, CA 94305 USA
关键词
STRUCTURAL BASIS; DNA; ENDONUCLEASE; MUTAGENESIS; PLATFORM; CPF1; BASE;
D O I
10.1016/j.molcel.2021.08.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Compact and versatile CRISPR-Cas systems will enable genome engineering applications through high-efficiency delivery in a wide variety of contexts. Here, we create an efficient miniature Cas system (CasMINI) engineered from the type V-F Cas12f (Cas14) system by guide RNA and protein engineering, which is less than half the size of currently used CRISPR systems (Cas9 or Cas12a). We demonstrate that CasMINI can drive high levels of gene activation (up to thousands-fold increases), while the natural Cas12f system fails to function in mammalian cells. We show that the CasMINI system has comparable activities to Cas12a for gene activation, is highly specific, and allows robust base editing and gene editing. We expect that CasMINI can be broadly useful for cell engineering and gene therapy applications ex vivo and in vivo.
引用
收藏
页码:4333 / +
页数:18
相关论文
共 50 条
  • [31] Genome editing with the CRISPR-Cas system: an art, ethics and global regulatory perspective
    Zhang, Debin
    Hussain, Amjad
    Manghwar, Hakim
    Xie, Kabin
    Xie, Shengsong
    Zhao, Shuhong
    Larkin, Robert M.
    Qing, Ping
    Jin, Shuangxia
    Ding, Fang
    PLANT BIOTECHNOLOGY JOURNAL, 2020, 18 (08) : 1651 - 1669
  • [32] Advances in Editing Silkworms (Bombyx mori) Genome by Using the CRISPR-Cas System
    Baci, Gabriela-Maria
    Cucu, Alexandra-Antonia
    Giurgiu, Alexandru-Ioan
    Musca, Adriana-Sebastiana
    Bagameri, Lilla
    Moise, Adela Ramona
    Bobis, Otilia
    Ratiu, Attila Cristian
    Dezmirean, Daniel Severus
    INSECTS, 2022, 13 (01)
  • [33] CRISPR-Cas system: Toward a more efficient technology for genome editing and beyond
    Ahmadzadeh, Vahideh
    Farajnia, Safar
    Baghban, Roghayyeh
    Rahbarnia, Leila
    Zarredar, Habib
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2019, 120 (10) : 16379 - 16392
  • [34] Recent trends in CRISPR-Cas system: genome, epigenome, and transcriptome editing and CRISPR delivery systems
    Bae, Taegeun
    Hur, Junseok W.
    Kim, Dokyoung
    Hur, Junho K.
    GENES & GENOMICS, 2019, 41 (08) : 871 - 877
  • [35] Recent trends in CRISPR-Cas system: genome, epigenome, and transcriptome editing and CRISPR delivery systems
    Taegeun Bae
    Junseok W. Hur
    Dokyoung Kim
    Junho K. Hur
    Genes & Genomics, 2019, 41 : 871 - 877
  • [36] Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing
    Zhang, Xiya
    Li, Tao
    Ou, Jianping
    Huang, Junjiu
    Liang, Puping
    PROTEIN & CELL, 2022, 13 (05) : 316 - 335
  • [37] Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing
    Xiya Zhang
    Tao Li
    Jianping Ou
    Junjiu Huang
    Puping Liang
    Protein & Cell, 2022, 13 (05) : 316 - 335
  • [38] Structural biology of CRISPR-Cas immunity and genome editing enzymes
    Wang, Joy Y.
    Pausch, Patrick
    Doudna, Jennifer A.
    NATURE REVIEWS MICROBIOLOGY, 2022, 20 (11) : 641 - 656
  • [39] Genome editing using programmable nucleases including CRISPR-Cas
    Kim, Hyongbum
    INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2017, 50 : S54 - S54
  • [40] Progress of CRISPR-Cas Based Genome Editing in Photosynthetic Microbes
    Naduthodi, Mihris Ibnu Saleem
    Barbosa, Maria J.
    van der Oost, John
    BIOTECHNOLOGY JOURNAL, 2018, 13 (09)