RATIONAL CURVES ON FIBERED CALABI-YAU MANIFOLDS

被引:0
|
作者
Diverio, Simone [1 ]
Fontanari, Claudio [2 ]
Martinelli, Diletta [3 ]
机构
[1] Sapienza Univ Roma, Dipartimento Matemat Guido Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[2] Univ Trento, Dipartimento Matemat, Via Sommarive 14, I-38123 Povo, Trento, Italy
[3] Univ Edinburgh, Sch Math, Peter Guthrie Tait Rd, Edinburgh SW7 2AZ, Midlothian, Scotland
来源
DOCUMENTA MATHEMATICA | 2019年 / 24卷
关键词
Elliptic fiber space; Calabi-Yau manifold; fibration; rational curve; rational multi-section; canonical bundle formula; THREEFOLDS; CONJECTURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a smooth projective complex manifold of dimension greater than two endowed with an elliptic fiber space structure and with finite fundamental group always contains a rational curve, provided its canonical bundle is relatively trivial. As an application of this result, we prove that any Calabi-Yau manifold that admits a fibration onto a curve whose general fiber is an abelian variety always contains a rational curve.
引用
收藏
页码:663 / 675
页数:13
相关论文
共 50 条
  • [41] Multiple covers and the integrality conjecture for rational curves in Calabi-Yau threefolds
    Bryan, J
    Katz, S
    Leung, NC
    JOURNAL OF ALGEBRAIC GEOMETRY, 2001, 10 (03) : 549 - 568
  • [42] Noncommutative Resolutions of ADE Fibered Calabi-Yau Threefolds
    Alexander Quintero Vélez
    Alex Boer
    Communications in Mathematical Physics, 2010, 297 : 597 - 619
  • [43] Calabi-Yau and fractional Calabi-Yau categories
    Kuznetsov, Alexander
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 753 : 239 - 267
  • [44] Mirror symmetry of Calabi-Yau manifolds fibered by (1,8)-polarized abelian surfaces
    Hosono, Shinobu
    Takagi, Hiromichi
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2022, 16 (02) : 215 - 298
  • [45] Some results on generalized Calabi-Yau manifolds
    De Bartolomeis, Paolo
    Tomassini, Adriano
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (5-6) : 1273 - 1292
  • [46] Orientability for gauge theories on Calabi-Yau manifolds
    Cao, Yalong
    Leung, Naichung Conan
    ADVANCES IN MATHEMATICS, 2017, 314 : 48 - 70
  • [47] Neutral Calabi-Yau structures on Kodaira manifolds
    Fino, A
    Pedersen, H
    Poon, YS
    Sorensen, MW
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 248 (02) : 255 - 268
  • [48] Fano manifolds of Calabi-Yau Hodge type
    Iliev, Atanas
    Manivel, Laurent
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (06) : 2225 - 2244
  • [49] Crystal Melting and Toric Calabi-Yau Manifolds
    Hirosi Ooguri
    Masahito Yamazaki
    Communications in Mathematical Physics, 2009, 292 : 179 - 199
  • [50] Holomorphic Cartan geometries and Calabi-Yau manifolds
    Biswas, Indranil
    McKay, Benjamin
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (04) : 661 - 663