Predicting enzyme class from protein structure using Bayesian classification

被引:0
|
作者
Borro, Luiz C. [1 ]
Oliveira, Stanley R. M. [1 ]
Yamagishi, Michel E. B. [1 ]
Mancini, Adaulto L. [1 ]
Jardine, Jose G. [1 ]
Mazoni, Ivan [1 ]
dos Santos, Edgard H. [1 ]
Higa, Roberto H. [1 ]
Kuser, Paula R. [1 ]
Neshich, Goran [1 ]
机构
[1] Embrapa Informat Technol, BR-13083886 Campinas, SP, Brazil
关键词
protein function prediction; protein structure; Naive Bayes; enzyme classification number; Bayesian classifier; data classification;
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Predicting enzyme class from protein structure parameters is a challenging problem in protein analysis. We developed a method to predict enzyme class that combines the strengths of statistical and data-mining methods. This method has a strong mathematical foundation and is simple to implement, achieving an accuracy of 45%. A comparison with the methods found in the literature designed to predict enzyme class showed that our method outperforms the existing methods.
引用
收藏
页码:193 / 202
页数:10
相关论文
共 50 条
  • [31] Predicting the secondary structure of proteins using new ways of classification
    Liang, Luo
    2012 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL 2, 2012, : 212 - 215
  • [32] Predicting Rat and Human Pregnane X Receptor Activators Using Bayesian Classification Models
    AbdulHameed, Mohamed Diwan M.
    Ippolito, Danielle L.
    Wallqvist, Anders
    CHEMICAL RESEARCH IN TOXICOLOGY, 2016, 29 (10) : 1729 - 1740
  • [33] Multi-class protein classification using adaptive codes
    Melvin, Iain
    Ie, Eugene
    Wetson, Jason
    Noble, William Stafford
    Leslie, Christina
    JOURNAL OF MACHINE LEARNING RESEARCH, 2007, 8 : 1557 - 1581
  • [34] Classification using Residual Vector Quantization with Markov-Bayesian Structure
    Khan, Syed Irteza Ali
    Anderson, David V.
    Barnes, Christopher F.
    2015 DATA COMPRESSION CONFERENCE (DCC), 2015, : 454 - 454
  • [35] Breast Cancer Classification and Predicting Class Labels Using ResNet50
    Kumar, T. Sunil
    Sridhar, Gujjeti
    Manju, D.
    Subhash, P.
    Nagaraju, Gujjeti
    JOURNAL OF ELECTRICAL SYSTEMS, 2023, 19 (04) : 270 - 278
  • [36] DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure
    Cheung, Ming-Sin
    Maguire, Mahon L.
    Stevens, Tim J.
    Broadhurst, R. William
    JOURNAL OF MAGNETIC RESONANCE, 2010, 202 (02) : 223 - 233
  • [37] Feature extraction from protein sequences and classification of enzyme function
    Lee, Bum Ju
    Ryu, Keun Ho
    BMEI 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOL 1, 2008, : 138 - 142
  • [38] Predicting protein structure using only sequence information
    Karplus, K
    Barrett, C
    Cline, M
    Diekhans, M
    Grate, L
    Hughey, R
    PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1999, : 121 - 125
  • [39] Bayesian Classification and Regression Trees for Predicting Incidence of Cryptosporidiosis
    Hu, Wenbiao
    O'Leary, Rebecca A.
    Mengersen, Kerrie
    Choy, Samantha Low
    PLOS ONE, 2011, 6 (08):
  • [40] Predicting and Validating Protein Interactions Using Network Structure
    Chen, Pao-Yang
    Deane, Charlotte M.
    Reinert, Gesine
    PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (07)