SVM Aggregation Modelling for Spatio-temporal Air Pollution Analysis

被引:0
|
作者
Ali, Shahid [1 ]
Tirumala, Sreenivas Sremath [1 ]
Sarrafzadeh, Abdolhossein [1 ]
机构
[1] Unitec Inst Technol, Auckland, New Zealand
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This study is concerned with computation methods for environmental data analysis in order to enable facilitate effective decision making when addressing air pollution problems. A number of environmental air pollution studies often simplify the problem but fail to consider the fact that air pollution is a spatio-temporal problem. This research addresses the air pollution problem as spatio-temporal problem by proposing a new decentralized computational technique named Online Scalable SVM Ensemble Learning Method (OSSELM). Special consideration is given to distributed ensemble in order to resolve the spatio-temporal data collection problem i.e., the data collected from multiple monitoring stations dispersed over a geographical location. Moreover, the air pollution problem is address systematically including computational detection, examination of possible causes, and air-quality prediction.
引用
收藏
页码:249 / 254
页数:6
相关论文
共 50 条
  • [31] AirPollutionViz: visual analytics for understanding the spatio-temporal evolution of air pollution
    Yue, Xiaoqi
    Feng, Dan
    Sun, Desheng
    Liu, Chao
    Qin, Hongxing
    Hu, Haibo
    [J]. JOURNAL OF VISUALIZATION, 2024, 27 (02) : 215 - 233
  • [32] Multi-objective evolutionary spatio-temporal forecasting of air pollution
    Espinosa, Raquel
    Jimenez, Fernando
    Palma, Jose
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 136 : 15 - 33
  • [33] Bayesian Modelling and Analysis of Spatio-Temporal Neuronal Networks
    Rigat, Fabio
    de Gunst, Mathisca
    van Pelt, Jaap
    [J]. BAYESIAN ANALYSIS, 2006, 1 (04): : 733 - 764
  • [34] Spatio-temporal aggregation using sketches
    Tao, YF
    Kollios, G
    Considine, J
    Li, FF
    Papadias, D
    [J]. 20TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 2004, : 214 - 225
  • [35] A THEORY OF SPATIO-TEMPORAL AGGREGATION FOR VISION
    FLINCHBAUGH, BE
    CHANDRASEKARAN, B
    [J]. ARTIFICIAL INTELLIGENCE, 1981, 17 (1-3) : 387 - 407
  • [36] A visual analytics framework for spatio-temporal analysis and modelling
    Andrienko, Natalia
    Andrienko, Gennady
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2013, 27 (01) : 55 - 83
  • [37] A visual analytics framework for spatio-temporal analysis and modelling
    Natalia Andrienko
    Gennady Andrienko
    [J]. Data Mining and Knowledge Discovery, 2013, 27 : 55 - 83
  • [38] Modelling and analysis of spatio-temporal dynamics of a marine ecosystem
    Chakraborty, Kunal
    Manthena, Vamsi
    [J]. NONLINEAR DYNAMICS, 2015, 81 (04) : 1895 - 1906
  • [39] EFFICIENT SPATIO-TEMPORAL MODELLING TO ENABLE TOPOLOGICAL ANALYSIS
    Jahn, M. W.
    Kuper, P.
    Breunig, M.
    [J]. 17TH 3D GEOINFO CONFERENCE, 2022, 10-4 (W2): : 137 - 144
  • [40] Modelling and analysis of spatio-temporal dynamics of a marine ecosystem
    Kunal Chakraborty
    Vamsi Manthena
    [J]. Nonlinear Dynamics, 2015, 81 : 1895 - 1906