A Comprehensive Survey on Parallel Submanifolds in Riemannian and Pseudo-Riemannian Manifolds

被引:1
|
作者
Chen, Bang-Yen [1 ]
机构
[1] Michigan State Univ, Dept Math, 619 Red Cedar Rd, E Lansing, MI 48824 USA
关键词
parallel submanifold; real space form; complex space form; totally real submanifolds; Kaehler submanifolds; light cone; Thurston 3D geometries; Bianchi-Cartan-Vranceasu spaces; MEAN-CURVATURE VECTOR; MARGINALLY TRAPPED SURFACES; INDEFINITE SPACE-FORMS; PLANAR NORMAL SECTIONS; REAL SUB-MANIFOLDS; COMPLETE CLASSIFICATION; DIFFERENTIAL GEOMETRY; LORENTZ SURFACES; SYMMETRIC SUBMANIFOLDS; KAEHLER SUBMANIFOLDS;
D O I
10.3390/axioms8040120
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A submanifold of a Riemannian manifold is called a parallel submanifold if its second fundamental form is parallel with respect to the van der Waerden-Bortolotti connection. From submanifold point of view, parallel submanifolds are the simplest Riemannian submanifolds next to totally geodesic ones. Parallel submanifolds form an important class of Riemannian submanifolds since extrinsic invariants of a parallel submanifold do not vary from point to point. In this paper, we provide a comprehensive survey on this important class of submanifolds.
引用
收藏
页数:64
相关论文
共 50 条
  • [41] Spacelike Graphs with Parallel Mean Curvature in Pseudo-Riemannian Product Manifolds
    Zicheng ZHAO1 1School of Mathematical Sciences
    [J]. Chinese Annals of Mathematics,Series B, 2012, 33 (01) : 17 - 32
  • [42] Pseudo-Riemannian Manifolds with Commuting Jacobi Operators
    Brozos-Vázquez M.
    Gilkey P.
    [J]. Rendiconti del Circolo Matematico di Palermo, 2006, 55 (2) : 163 - 174
  • [43] Indefinite Kasparov Modules and Pseudo-Riemannian Manifolds
    Koen van den Dungen
    Adam Rennie
    [J]. Annales Henri Poincaré, 2016, 17 : 3255 - 3286
  • [44] Pseudo-Riemannian Jacobi-Videv manifolds
    Gilkey, P.
    Nikcevic, S.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2007, 4 (05) : 727 - 738
  • [45] Note on the holonomy groups of pseudo-Riemannian manifolds
    A. S. Galaev
    [J]. Mathematical Notes, 2013, 93 : 810 - 815
  • [46] PSEUDO-RIEMANNIAN MANIFOLDS WITH TOTALLY GEODESIC BISECTORS
    BEEM, JK
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A205 - A205
  • [47] INVARIANT COEFFICIENT OPERATORS ON PSEUDO-RIEMANNIAN MANIFOLDS
    BABBITT, D
    [J]. JOURNAL OF MATHEMATICS AND MECHANICS, 1966, 15 (04): : 643 - &
  • [48] Cones over pseudo-Riemannian manifolds and their holonomy
    Alekseevsky, D. V.
    Cortes, V.
    Galaev, A. S.
    Leistner, T.
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 635 : 23 - 69
  • [49] Pseudo-Riemannian manifolds with recurrent spinor fields
    Galaev, A. S.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (04) : 604 - 613
  • [50] Pseudo-Riemannian manifolds with simple Jacobi operators
    Bonome, A
    Castro, R
    García-Río, E
    Hervella, L
    Vázquez-Lorenzo, R
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2002, 54 (04) : 847 - 875