Centre families in two-dimensional complex holomorphic dynamical systems

被引:4
|
作者
Needham, DJ [1 ]
McAllister, S [1 ]
机构
[1] Univ Reading, Dept Math, Reading RG6 6AX, Berks, England
关键词
dynamical systems; holomorphic; centre families;
D O I
10.1098/rspa.1998.0258
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider a two-dimensional complex holomorphic dynamical system. In particular, we use the singular point theory of C. H. Briot and J. C. Bouquet to establish the existence of complex holomorphic invariant manifolds of the system in the neighbourhood of an equilibrium point with two purely imaginary eigenvalues. Consequently, this enables us to establish the existence of isochronous centre families in the neighbourhood of the equilibrium point. The results are exhibited by application to the complex Takens-Bogdanov system.
引用
收藏
页码:2267 / 2278
页数:12
相关论文
共 50 条
  • [41] Symmetries of differential-difference dynamical systems in a two-dimensional lattice
    Ste-Marie, Isabelle
    Tremblay, Sebastien
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (45)
  • [42] The estimate from below of cycle numbers for two-dimensional dynamical systems
    Leonov, G.A.
    Vestnik Sankt-Peterburgskogo Universiteta. Ser 1. Matematika Mekhanika Astronomiya, 1994, (01): : 42 - 46
  • [43] Stationary points: two-dimensional p-fuzzy dynamical systems
    Jefferson Cruz dos Santos Leite
    João de Deus Mendes da Silva
    Moiseis dos Santos Cecconello
    Rodney Carlos Bassanezi
    Computational and Applied Mathematics, 2018, 37 : 6448 - 6482
  • [44] Two-dimensional dynamical systems which admit Lie and Noether symmetries
    Tsamparlis, Michael
    Paliathanasis, Andronikos
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (17)
  • [45] A direct method for calculating Lyapunov values of two-dimensional dynamical systems
    Leonov, G. A.
    Kuznetsov, N. V.
    Kudryashova, E. V.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2010, 16 (01): : 119 - 126
  • [47] Collapsed indecomposable continua in area preserving two-dimensional dynamical systems
    Kennedy, Judy
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (07) : 2073 - 2080
  • [48] Stability of asynchronous two-dimensional Fornasini-Marchesini dynamical systems
    Bhaya, A
    Kaszkurewicz, E
    Su, Y
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 332 : 257 - 263
  • [49] TWO-DIMENSIONAL SHRINKING TARGET PROBLEM IN BETA-DYNAMICAL SYSTEMS
    Hussain, Mumtaz
    Wang, Weiliang
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 97 (01) : 33 - 42
  • [50] Stationary points: two-dimensional p-fuzzy dynamical systems
    dos Santos Leite, Jefferson Cruz
    Mendes da Silva, Joao de Deus
    Cecconello, Moiseis dos Santos
    Bassanezi, Rodney Carlos
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (05): : 6448 - 6482