A review of high temperature (≥ 500 °C) latent heat thermal energy storage

被引:60
|
作者
Opolot, Michael [1 ]
Zhao, Chunrong [1 ]
Liu, Ming [2 ]
Mancin, Simone [3 ]
Bruno, Frank [2 ]
Hooman, Kamel [1 ]
机构
[1] Univ Queensland, Sch Mech & Min Engn, St Lucia, Qld 4072, Australia
[2] Univ South Australia, Future Ind Inst, Mawson Lakes Blvd, Mawson Lakes, SA 5095, Australia
[3] Univ Padua, Dept Management & Engn, Stradella S Nicola 3, I-36100 Vicenza, Italy
来源
关键词
High temperature Phase change materials; (PCM); Latent thermal energy storage (LTES); Concentrated solar power (CSP) plants; Heat transfer enhancement; PHASE-CHANGE MATERIALS; SOLAR POWER-PLANTS; 2-PHASE STEFAN-PROBLEMS; FINITE-ELEMENT-METHOD; GRAPHITE FOAM; CONTACT RESISTANCE; NUMERICAL-ANALYSIS; SYSTEMS; PERFORMANCE; PCM;
D O I
10.1016/j.rser.2022.112293
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Demand for high temperature storage is on a high rise, particularly with the advancement of circular economy as a solution to reduce global warming effects. Thermal energy storage can be used in concentrated solar power plants, waste heat recovery and conventional power plants to improve the thermal efficiency. Latent thermal energy storage systems using phase change materials are highly thought for such applications due to their high energy density as compared to their sensible heat counterparts. This review, therefore, gives a summary of major factors that need to be assessed before an integration of the latent thermal energy system is undertaken. In addition, challenges faced when constructing and experimenting with the storage systems are mentioned. Finally, an insight on the cost analysis and the general performance metrics of the latent thermal energy storage systems is provided before conclusions are drawn.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Simultaneous charging and discharging processes in latent heat thermal energy storage: A review
    Thonon, Maxime
    Fraisse, Gilles
    Zalewski, Laurent
    Pailha, Mickael
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2024, 47
  • [32] Investigation on the thermal performance of a high-temperature latent heat storage system
    Ma, Zhao
    Yang, Wei-Wei
    Yuan, Fan
    Jin, Bo
    He, Ya-Ling
    APPLIED THERMAL ENGINEERING, 2017, 122 : 579 - 592
  • [33] Alternative Heat Transfer Enhancement Techniques for Latent Heat Thermal Energy Storage System: A Review
    Jegadheeswaran, Selvaraj
    Sundaramahalingam, Athimoolam
    Pohekar, Sanjay D.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2021, 42 (12)
  • [34] Alternative Heat Transfer Enhancement Techniques for Latent Heat Thermal Energy Storage System: A Review
    Selvaraj Jegadheeswaran
    Athimoolam Sundaramahalingam
    Sanjay D. Pohekar
    International Journal of Thermophysics, 2021, 42
  • [35] Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review
    Mahdi, Jasim M.
    Lohrasbi, Sina
    Nsofor, Emmanuel C.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 137 : 630 - 649
  • [36] Numerical simulation and parametric study on new type of high temperature latent heat thermal energy storage system
    Guo, Chaxiu
    Zhang, Wujun
    ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (05) : 919 - 927
  • [37] Investigation of a latent heat thermal energy storage system
    Morcos, V.H., 1600, (07): : 2 - 3
  • [38] Latent heat thermal storage (LHTS) for energy sustainability
    Anisur, M.R.
    Kibria, M.A.
    Mahfuz, M.H.
    Metselaar, I.H.S.C.
    Saidur, R.
    Green Energy and Technology, 2015, 201 : 245 - 263
  • [39] Convective Effects in a Latent Heat Thermal Energy Storage
    Fornarelli, Francesco
    Camporeale, Sergio Mario
    Fortunato, Bernardo
    HEAT TRANSFER ENGINEERING, 2021, 42 (01) : 1 - 22
  • [40] Three-dimensional simulation of high temperature latent heat thermal energy storage system assisted by finned heat pipes
    Tiari, Saeed
    Qiu, Songgang
    ENERGY CONVERSION AND MANAGEMENT, 2015, 105 : 260 - 271