A review of high temperature (≥ 500 °C) latent heat thermal energy storage

被引:60
|
作者
Opolot, Michael [1 ]
Zhao, Chunrong [1 ]
Liu, Ming [2 ]
Mancin, Simone [3 ]
Bruno, Frank [2 ]
Hooman, Kamel [1 ]
机构
[1] Univ Queensland, Sch Mech & Min Engn, St Lucia, Qld 4072, Australia
[2] Univ South Australia, Future Ind Inst, Mawson Lakes Blvd, Mawson Lakes, SA 5095, Australia
[3] Univ Padua, Dept Management & Engn, Stradella S Nicola 3, I-36100 Vicenza, Italy
来源
关键词
High temperature Phase change materials; (PCM); Latent thermal energy storage (LTES); Concentrated solar power (CSP) plants; Heat transfer enhancement; PHASE-CHANGE MATERIALS; SOLAR POWER-PLANTS; 2-PHASE STEFAN-PROBLEMS; FINITE-ELEMENT-METHOD; GRAPHITE FOAM; CONTACT RESISTANCE; NUMERICAL-ANALYSIS; SYSTEMS; PERFORMANCE; PCM;
D O I
10.1016/j.rser.2022.112293
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Demand for high temperature storage is on a high rise, particularly with the advancement of circular economy as a solution to reduce global warming effects. Thermal energy storage can be used in concentrated solar power plants, waste heat recovery and conventional power plants to improve the thermal efficiency. Latent thermal energy storage systems using phase change materials are highly thought for such applications due to their high energy density as compared to their sensible heat counterparts. This review, therefore, gives a summary of major factors that need to be assessed before an integration of the latent thermal energy system is undertaken. In addition, challenges faced when constructing and experimenting with the storage systems are mentioned. Finally, an insight on the cost analysis and the general performance metrics of the latent thermal energy storage systems is provided before conclusions are drawn.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Systematic review on the use of heat pipes in latent heat thermal energy storage tanks
    Miguel Maldonado, Jose
    de Gracia, Alvaro
    Cabeza, Luisa F.
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [22] Cost-effective ultra-high temperature latent heat thermal energy storage systems
    Ramos, A.
    Lopez, E.
    del Canizo, C.
    Datas, A.
    JOURNAL OF ENERGY STORAGE, 2022, 49
  • [23] Energy and exergy analyses of medium temperature latent heat thermal storage with high porosity metal matrix
    Kumar, Ashish
    Saha, Sandip K.
    APPLIED THERMAL ENGINEERING, 2016, 109 : 911 - 923
  • [24] High Temperature Combined Sensible-Latent Thermal Energy Storage
    Garcia, Pierre
    Pouvreau, Jerome
    SOLARPACES 2018: INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS, 2019, 2126
  • [25] A review on high temperature thermochemical heat energy storage
    Pardo, P.
    Deydier, A.
    Anxionnaz-Minvielle, Z.
    Rouge, S.
    Cabassud, M.
    Cognet, P.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 32 : 591 - 610
  • [26] Latent thermal energy storage for solar process heat applications at medium-high temperatures - A review
    Crespo, Alicia
    Barreneche, Camila
    Ibarra, Mercedes
    Platzer, Werner
    SOLAR ENERGY, 2019, 192 : 3 - 34
  • [27] Improved performance of latent heat energy storage systems utilizing high thermal conductivity fins: A review
    Dhaidan, Nabeel S.
    Khodadadi, J. M.
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2017, 9 (03)
  • [28] LOW-TEMPERATURE LATENT-HEAT THERMAL-ENERGY STORAGE - HEAT-STORAGE MATERIALS
    ABHAT, A
    SOLAR ENERGY, 1983, 30 (04) : 313 - 332
  • [29] A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material
    Bose, Prabhu
    Amirtham, Valan Arasu
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 65 : 81 - 100
  • [30] Review of PCM charging in latent heat thermal energy storage systems with fins
    Al-Salami, Hayder A.
    Dhaidan, Nabeel S.
    Abbas, Hawraa H.
    Al-Mousawi, Fadhel N.
    Homod, Raad Z.
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2024, 51