Optimal bilinear observers for bilinear state-space models by interaction matrices

被引:17
|
作者
Phan, Minh Q. [1 ]
Vicario, Francesco [2 ]
Longman, Richard W. [2 ,3 ]
Betti, Raimondo [3 ]
机构
[1] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
[2] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[3] Columbia Univ, Dept Civil Engn & Engn Mech, New York, NY 10027 USA
关键词
bilinear system; bilinear observer; interaction matrices; system identification; OKID; SYSTEM-IDENTIFICATION; EXISTENCE;
D O I
10.1080/00207179.2015.1007530
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper formulates optimal bilinear observers for bilinear state-space models. Observers in bilinear form, as opposed to other nonlinear forms, are required to develop an extension of observer/Kalman filter identification for simultaneous identification of a bilinear state-space model and an associated bilinear observer from noisy input-output measurements. The paper establishes the relationship between the bilinear observer gains and the interaction matrices which are used to convert the original bilinear state-space model to a form that simplifies the identification of such a model. Techniques to find the interaction matrices are developed. In the absence of noises, these matrices produce the gains of the fastest converging observer. In the presence of noises, they minimise the state estimation error in the same manner as a standard steady-state Kalman filter. Numerical examples illustrate both the theoretical and computational aspects of the proposed algorithms.
引用
收藏
页码:1504 / 1522
页数:19
相关论文
共 50 条
  • [21] A NEW ORTHOGONAL SERIES APPROACH TO STATE-SPACE ANALYSIS OF BILINEAR-SYSTEMS
    PARASKEVOPOULOS, PN
    TSIRIKOS, AS
    ARVANITIS, KG
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (04) : 793 - 797
  • [22] Three-stage least squares-based iterative estimation algorithms for bilinear state-space systems based on the bilinear state estimator
    Liu, Siyu
    Zhang, Yanliang
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2020, 34 (10) : 1501 - 1518
  • [23] Reprint of "A bilinear differential forms approach to parametric structured state-space modelling
    Rapisarda, P.
    Antoulas, A. C.
    [J]. SYSTEMS & CONTROL LETTERS, 2016, 95 : 77 - 82
  • [24] THE DOUBLE BILINEAR TRANSFORMATION FOR 2-D SYSTEMS IN STATE-SPACE DESCRIPTION
    AGATHOKLIS, P
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (02) : 994 - 996
  • [25] Efficient and systematic identification of MIMO bilinear state space models
    Verdult, V
    Verhaegen, M
    Chou, CT
    Lovera, M
    [J]. PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 1260 - 1265
  • [26] Maximum likelihood identification of multivariable bilinear state-space systems by projected gradient search
    Verdult, V
    Bergboer, N
    Verhaegen, M
    [J]. PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 1808 - 1813
  • [27] Recursive parameter identification of the dynamical models for bilinear state space systems
    Zhang, Xiao
    Ding, Feng
    Alsaadi, Fuad E.
    Hayat, Tasawar
    [J]. NONLINEAR DYNAMICS, 2017, 89 (04) : 2415 - 2429
  • [28] Classical state space realizability of input-output bilinear models
    Kotta, Ü
    Nomm, S
    Zinober, ASI
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (12) : 1224 - 1232
  • [29] Recursive parameter identification of the dynamical models for bilinear state space systems
    Xiao Zhang
    Feng Ding
    Fuad E. Alsaadi
    Tasawar Hayat
    [J]. Nonlinear Dynamics, 2017, 89 : 2415 - 2429
  • [30] BILINEAR SYSTEM IDENTIFICATION BY MINIMAL-ORDER STATE OBSERVERS
    Vicario, Francesco
    Phan, Minh Q.
    Longman, Richard W.
    Betti, Raimondo
    [J]. SPACEFLIGHT MECHANICS 2015, PTS I-III, 2015, 155 : 1175 - 1192