Recursive parameter identification of the dynamical models for bilinear state space systems

被引:0
|
作者
Xiao Zhang
Feng Ding
Fuad E. Alsaadi
Tasawar Hayat
机构
[1] Jiangnan University,Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education)
[2] Qingdao University of Science and Technology,College of Automation and Electronic Engineering
[3] King Abdulaziz University,Department of Electrical and Computer Engineering, Faculty of Engineering
[4] Quaid-I-Azam University,Department of Mathematics
来源
Nonlinear Dynamics | 2017年 / 89卷
关键词
Dynamical system; Parameter estimation; State estimation; Multi-innovation theory; State space model; Bilinear system;
D O I
暂无
中图分类号
学科分类号
摘要
This paper investigates the recursive parameter and state estimation algorithms for a special class of nonlinear systems (i.e., bilinear state space systems). A state observer-based stochastic gradient (O-SG) algorithm is presented for the bilinear state space systems by using the gradient search. In order to improve the parameter estimation accuracy and the convergence rate of the O-SG algorithm, a state observer-based multi-innovation stochastic gradient algorithm and a state observer-based recursive least squares identification algorithm are derived by means of the multi-innovation theory. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed algorithms.
引用
收藏
页码:2415 / 2429
页数:14
相关论文
共 50 条
  • [1] Recursive parameter identification of the dynamical models for bilinear state space systems
    Zhang, Xiao
    Ding, Feng
    Alsaadi, Fuad E.
    Hayat, Tasawar
    NONLINEAR DYNAMICS, 2017, 89 (04) : 2415 - 2429
  • [2] Recursive Identification of Bilinear Dynamical Systems with Noise in Output Signal
    Ivanov, D. V.
    Bobkova, E. U.
    Zharkova, A. A.
    2017 IEEE EAST-WEST DESIGN & TEST SYMPOSIUM (EWDTS), 2017,
  • [3] Decomposition based recursive identification algorithms for bilinear-parameter models
    Wang, Xuehai
    Ding, Feng
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 6116 - 6120
  • [4] Identification of extended bilinear state space models
    Schrempf, A
    del Re, L
    PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 2151 - 2156
  • [5] Bilinear state space systems for nonlinear dynamical modelling
    Verdult V.
    Verhaegen M.
    Theory in Biosciences, 2000, 119 (1) : 1 - 9
  • [6] Bilinear state space systems for nonlinear dynamical modelling
    Verdult, V
    Verhaegen, M
    THEORY IN BIOSCIENCES, 2000, 119 (01) : 1 - 9
  • [7] Efficient and systematic identification of MIMO bilinear state space models
    Verdult, V
    Verhaegen, M
    Chou, CT
    Lovera, M
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 1260 - 1265
  • [8] Efficient and systematic identification of MIMO bilinear state space models
    Verdult, V.
    Verhaegen, M.
    Chou, C.T.
    Lovera, M.
    Proceedings of the IEEE Conference on Decision and Control, 1998, 2 : 1260 - 1265
  • [9] Recursive parameter estimation and its convergence for bilinear systems
    Zhang, Xiao
    Ding, Feng
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (05): : 677 - 688
  • [10] RECURSIVE-IDENTIFICATION OF BILINEAR-SYSTEMS
    FNAIECH, F
    LJUNG, L
    INTERNATIONAL JOURNAL OF CONTROL, 1987, 45 (02) : 453 - 470