A Bayesian model for sparse functional data

被引:21
|
作者
Thompson, Wesley K. [1 ]
Rosen, Ori [2 ]
机构
[1] Univ Pittsburgh, Dept Stat, Pittsburgh, PA 15260 USA
[2] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
关键词
Bayesian nonparametric smoothing; B-splines; functional data; longitudinal data; mixed models; MCMC;
D O I
10.1111/j.1541-0420.2007.00829.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a method for analyzing data which consist of curves on multiple individuals, i.e., longitudinal or functional data. We use a Bayesian model where curves are expressed as linear combinations of B-splines with random coefficients. The curves are estimated as posterior means obtained via Markov chain Monte Carlo (MCMC) methods, which automatically select the local level of smoothing. The method is applicable to situations where curves are sampled sparsely and/or at irregular time points. We construct posterior credible intervals for the mean curve and for the individual curves. This methodology provides unified, efficient, and flexible means for smoothing functional data.
引用
收藏
页码:54 / 63
页数:10
相关论文
共 50 条
  • [1] A Bayesian semiparametric model for bivariate sparse longitudinal data
    Das, Kiranmoy
    Li, Runze
    Sengupta, Subhajit
    Wu, Rongling
    [J]. STATISTICS IN MEDICINE, 2013, 32 (22) : 3899 - 3910
  • [2] A Modular Bayesian Salmonella Source Attribution Model for Sparse Data
    Mikkela, Antti
    Ranta, Jukka
    Tuominen, Pirkko
    [J]. RISK ANALYSIS, 2019, 39 (08) : 1796 - 1811
  • [3] A Bayesian regression model for multivariate functional data
    Rosen, Ori
    Thompson, Wesley K.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (11) : 3773 - 3786
  • [4] Functional principal component models for sparse and irregularly spaced data by Bayesian inference
    Ye, Jun
    [J]. JOURNAL OF APPLIED STATISTICS, 2024, 51 (07) : 1287 - 1317
  • [5] Bayesian Framework for Simultaneous Registration and Estimation of Noisy, Sparse, and Fragmented Functional Data
    Matuk, James
    Bharath, Karthik
    Chkrebtii, Oksana
    Kurtek, Sebastian
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 1964 - 1980
  • [6] Bayesian Sparse Topic Model
    Chien, Jen-Tzung
    Chang, Ying-Lan
    [J]. JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2014, 74 (03): : 375 - 389
  • [7] Bayesian Sparse Topic Model
    Jen-Tzung Chien
    Ying-Lan Chang
    [J]. Journal of Signal Processing Systems, 2014, 74 : 375 - 389
  • [8] Clustering sparse binary data with hierarchical Bayesian Bernoulli mixture model
    Ye, Mao
    Zhang, Peng
    Nie, Lizhen
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 123 : 32 - 49
  • [9] An invariant Bayesian model selection principle for Gaussian data in a sparse representation
    Fossgaard, Eirik
    Fla, Tor
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (08) : 3438 - 3455
  • [10] Bayesian approach to multicentre sparse data
    Subbiah, M.
    Kumar, B. Kishore
    Srinivasan, M. R.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2008, 37 (04) : 687 - 696