Bayesian Sparse Topic Model

被引:24
|
作者
Chien, Jen-Tzung [1 ]
Chang, Ying-Lan [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Elect & Comp Engn, Hsinchu 30010, Taiwan
关键词
Bayesian sparse learning; Feature selection; Topic model; VARIABLE SELECTION;
D O I
10.1007/s11265-013-0759-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new Bayesian sparse learning approach to select salient lexical features for sparse topic modeling. The Bayesian learning based on latent Dirichlet allocation (LDA) is performed by incorporating the spike-and-slab priors. According to this sparse LDA (sLDA), the spike distribution is used to select salient words while the slab distribution is applied to establish the latent topic model based on those selected relevant words. The variational inference procedure is developed to estimate prior parameters for sLDA. In the experiments on document modeling using LDA and sLDA, we find that the proposed sLDA does not only reduce the model perplexity but also reduce the memory and computation costs. Bayesian feature selection method does effectively identify relevant topic words for building sparse topic model.
引用
收藏
页码:375 / 389
页数:15
相关论文
共 50 条
  • [1] Bayesian Sparse Topic Model
    Jen-Tzung Chien
    Ying-Lan Chang
    [J]. Journal of Signal Processing Systems, 2014, 74 : 375 - 389
  • [2] BAYESIAN FEATURE SELECTION FOR SPARSE TOPIC MODEL
    Chang, Ying-Lan
    Lee, Kuen-Feng
    Chien, Jen-Tzung
    [J]. 2011 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2011,
  • [3] Bayesian sparse joint dynamic topic model with flexible lead-lag order
    Wang, Feifei
    Zhou, Rui
    Feng, Yichao
    Lu, Xiaoling
    [J]. INFORMATION SCIENCES, 2022, 616 : 392 - 410
  • [4] Bayesian sparse joint dynamic topic model with flexible lead-lag order
    Wang, Feifei
    Zhou, Rui
    Feng, Yichao
    Lu, Xiaoling
    [J]. Information Sciences, 2022, 616 : 392 - 410
  • [5] SPARSE TOPIC MODEL FOR TEXT CLASSIFICATION
    Liu, Tao
    [J]. PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 1916 - 1920
  • [6] A Sparse Topic Model for Bursty Topic Discovery in Social Networks
    Shi, Lei
    Du, Junping
    Kou, Feifei
    [J]. INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2020, 17 (05) : 816 - 824
  • [7] Bayesian Latent Topic Clustering Model
    Wu, Meng-Sung
    Chien, Jen-Tzung
    [J]. INTERSPEECH 2008: 9TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2008, VOLS 1-5, 2008, : 2162 - 2165
  • [8] Sparse Biterm Topic Model for Short Texts
    Zhu, Bingshan
    Cai, Yi
    Zhang, Huakui
    [J]. WEB AND BIG DATA, APWEB-WAIM 2021, PT I, 2021, 12858 : 227 - 241
  • [9] A Biterm Topic Model for Sparse Mutation Data
    Sason, Itay
    Chen, Yuexi
    Leiserson, Mark D. M.
    Sharan, Roded
    [J]. CANCERS, 2023, 15 (05)
  • [10] Neural variational sparse topic model for sparse explainable text representation
    Xie, Qianqian
    Tiwari, Prayag
    Gupta, Deepak
    Huang, Jimin
    Peng, Min
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2021, 58 (05)