A Bayesian model for sparse functional data

被引:21
|
作者
Thompson, Wesley K. [1 ]
Rosen, Ori [2 ]
机构
[1] Univ Pittsburgh, Dept Stat, Pittsburgh, PA 15260 USA
[2] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
关键词
Bayesian nonparametric smoothing; B-splines; functional data; longitudinal data; mixed models; MCMC;
D O I
10.1111/j.1541-0420.2007.00829.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a method for analyzing data which consist of curves on multiple individuals, i.e., longitudinal or functional data. We use a Bayesian model where curves are expressed as linear combinations of B-splines with random coefficients. The curves are estimated as posterior means obtained via Markov chain Monte Carlo (MCMC) methods, which automatically select the local level of smoothing. The method is applicable to situations where curves are sampled sparsely and/or at irregular time points. We construct posterior credible intervals for the mean curve and for the individual curves. This methodology provides unified, efficient, and flexible means for smoothing functional data.
引用
收藏
页码:54 / 63
页数:10
相关论文
共 50 条
  • [41] Sparse Bayesian dictionary learning with a Gaussian hierarchical model
    Yang, Linxiao
    Fang, Jun
    Cheng, Hong
    Li, Hongbin
    [J]. SIGNAL PROCESSING, 2017, 130 : 93 - 104
  • [42] Sparse Bayesian Flood Forecasting Model Based on SMOTEBoost
    Wu, Yirui
    Ding, Yukai
    Feng, Jun
    [J]. 2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2019, : 279 - 284
  • [43] Bayesian sparse representation model for SAR image classification
    Dai, Kaiyan
    Lyu, Wentao
    Luo, Shuyun
    Shi, Qingjiang
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (04):
  • [44] Bayesian inference and optimal design for the sparse linear model
    Seeger, Matthias W.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2008, 9 : 759 - 813
  • [45] Hyperspectral image unmixing using a sparse Bayesian model
    Chen, F.
    Wang, K.
    Tang, T. F.
    [J]. REMOTE SENSING LETTERS, 2014, 5 (07) : 642 - 651
  • [46] Image Sparse Representation Based on a Nonparametric Bayesian Model
    Ding Xinghao
    Chen Xianbo
    [J]. ADVANCES IN PRECISION INSTRUMENTATION AND MEASUREMENT, 2012, 103 : 109 - 114
  • [47] Sparse estimation of linear model via Bayesian method
    Yang, Yang
    Yang, Yanjiao
    Wang, Lichun
    [J]. COMPUTATIONAL STATISTICS, 2024, 39 (04) : 2011 - 2038
  • [48] A Bayesian time-course model for functional magnetic resonance imaging data
    Genovese, CR
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (451) : 691 - 703
  • [49] Unsupervised bayesian clustering for functional data
    Juery, Damien
    Abraham, Christophe
    Fontez, Benedicte
    [J]. JOURNAL OF THE SFDS, 2014, 155 (02): : 185 - 201
  • [50] Smoothing and Mean-Covariance Estimation of Functional Data with a Bayesian Hierarchical Model
    Yang, Jingjing
    Zhu, Hongxiao
    Choi, Taeryon
    Cox, Dennis D.
    [J]. BAYESIAN ANALYSIS, 2016, 11 (03): : 649 - 670