The multipliers of periodic points in one-dimensional dynamics

被引:13
|
作者
Martens, M [1 ]
de Melo, W
机构
[1] SUNY Stony Brook, Inst Math Sci, Stony Brook, NY 11794 USA
[2] IMPA, BR-22460320 Rio De Janeiro, Brazil
关键词
D O I
10.1088/0951-7715/12/2/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It will be shown that the smooth conjugacy class of an S-unimodal map which has neither a periodic attractor nor a Canter attractor is determined by the multipliers of the periodic orbits. This generalizes a result by M Shub and D Sullivan (1985 Expanding endomorphism of the circle revisited Erg. Theor Dyn. Sys. 5 285-9) for smooth expanding maps of the circle. AMS classification scheme numbers: 58F03.
引用
收藏
页码:217 / 227
页数:11
相关论文
共 50 条
  • [31] Exceptional points in the one-dimensional Hubbard model
    Rausch, Roman
    Peters, Robert
    Yoshida, Tsuneya
    NEW JOURNAL OF PHYSICS, 2021, 23 (01):
  • [32] Study of the one-dimensional periodic polaron structures
    Vladimir K. Mukhomorov
    Journal of Nanoparticle Research, 2011, 13 : 6113 - 6120
  • [33] Periodic attractors of perturbed one-dimensional maps
    Kozlovski, O.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2013, 33 : 1519 - 1541
  • [34] Periodic solutions for the one-dimensional fractional Laplacian
    Barrios, B.
    Garcia-Melian, J.
    Quaas, A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (09) : 5258 - 5289
  • [35] One-dimensional crystal with a complex periodic potential
    Boyd, JK
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (01) : 15 - 29
  • [36] Topological bands in one-dimensional periodic potentials
    Zheng, Yi
    Yang, Shi-Jie
    Physica B: Condensed Matter, 2014, 454 : 93 - 97
  • [37] SCATTERING BY LOCALLY PERIODIC ONE-DIMENSIONAL POTENTIALS
    ROZMAN, MG
    REINEKER, P
    TEHVER, R
    PHYSICS LETTERS A, 1994, 187 (01) : 127 - 131
  • [38] QUASICLASSICAL PARTICLES IN A ONE-DIMENSIONAL PERIODIC POTENTIAL
    DYKHNE, AM
    SOVIET PHYSICS JETP-USSR, 1961, 13 (05): : 999 - 1001
  • [39] Topological bands in one-dimensional periodic potentials
    Zheng, Yi
    Yang, Shi-Jie
    PHYSICA B-CONDENSED MATTER, 2014, 454 : 93 - 97
  • [40] PHENOMENOLOGY OF PERIODIC WINDOWS IN ONE-DIMENSIONAL MAPS
    DEDEUS, JD
    DILAO, R
    DACOSTA, AN
    EUROPHYSICS LETTERS, 1989, 9 (04): : 303 - 308