The multipliers of periodic points in one-dimensional dynamics

被引:13
|
作者
Martens, M [1 ]
de Melo, W
机构
[1] SUNY Stony Brook, Inst Math Sci, Stony Brook, NY 11794 USA
[2] IMPA, BR-22460320 Rio De Janeiro, Brazil
关键词
D O I
10.1088/0951-7715/12/2/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It will be shown that the smooth conjugacy class of an S-unimodal map which has neither a periodic attractor nor a Canter attractor is determined by the multipliers of the periodic orbits. This generalizes a result by M Shub and D Sullivan (1985 Expanding endomorphism of the circle revisited Erg. Theor Dyn. Sys. 5 285-9) for smooth expanding maps of the circle. AMS classification scheme numbers: 58F03.
引用
收藏
页码:217 / 227
页数:11
相关论文
共 50 条
  • [21] One-Dimensional Microstructure Dynamics
    Berezovski, Arkadi
    Engelbrecht, Jueri
    Maugin, Gerard A.
    MECHANICS OF MICROSTRUCTURED SOLIDS: CELLULAR MATERIALS, FIBRE REINFORCED SOLIDS AND SOFT TISSUES, 2009, 46 : 21 - +
  • [22] Renormalization in one-dimensional dynamics
    Skripchenko, A. S.
    RUSSIAN MATHEMATICAL SURVEYS, 2023, 78 (06) : 983 - 1021
  • [23] Dynamics of one-dimensional supersolids
    Kunimi, Masaya
    Kobayashi, Michikazu
    Kato, Yusuke
    26TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT26), PTS 1-5, 2012, 400
  • [24] One-dimensional measles dynamics
    Al-Showaikh, FNM
    Twizell, EH
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 152 (01) : 169 - 194
  • [25] Rigidity in one-dimensional dynamics
    Khanin, KM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (18-19): : 2311 - 2324
  • [26] Contour dynamics for one-dimensional Vlasov-Poisson plasma with the periodic boundary
    Sato, Hiroki
    Watanabe, T. H.
    Maeyama, S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 445
  • [27] On monomial commutativity of operators satisfying commutation relations and periodic points for one-dimensional dynamical systems
    Tumwesigye, Alex Behakanira
    Silvestrov, Sergei
    10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2014), 2014, 1637 : 1110 - 1119
  • [28] A one-dimensional diffusion hits points fast
    Bruggeman, Cameron
    Ruf, Johannes
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2016, 21
  • [29] Misiurewicz points in one-dimensional quadratic maps
    Romera, M
    Pastor, G
    Montoya, F
    PHYSICA A, 1996, 232 (1-2): : 517 - 535
  • [30] On phase separation points for one-dimensional models
    Ganikhodjaev N.N.
    Rozikov U.A.
    Siberian Advances in Mathematics, 2009, 19 (2) : 75 - 84