Theoretical and experimental insights into CO2 formation on Co2C catalysts in syngas conversion to Value-Added chemicals

被引:5
|
作者
Zhang, Minhua [1 ,2 ,3 ]
Yu, Haipeng [1 ,2 ,3 ]
Sun, Yuzhe [1 ,2 ,3 ]
Yu, Yingzhe [1 ,2 ,3 ]
Chen, Yifei [1 ,2 ,3 ]
Wang, Lingtao [1 ,2 ,3 ]
机构
[1] Tianjin Univ, R&D Ctr Petrochem Technol, Key Lab Green Chem Technol Minist Educ, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Zhejiang Inst, Ningbo 315201, Zhejiang, Peoples R China
[3] Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Syngas conversion; CO; 2; Selectivity; Sodium promoter; WGS; FISCHER-TROPSCH SYNTHESIS; TOTAL-ENERGY CALCULATIONS; FINDING SADDLE-POINTS; ELASTIC BAND METHOD; GAS SHIFT REACTION; COBALT CARBIDE; LOWER OLEFINS; MORPHOLOGY CONTROL; ALCOHOLS SYNTHESIS; LIGHT OLEFINS;
D O I
10.1016/j.apsusc.2022.154379
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cobalt carbide (Co2C) has been discovered as the promising active phase for Fischer-Tropsch to olefins (FTO) process and higher alcohols synthesis (HAS) from syngas, in the form of nanoprisms and nanospheres, respectively. However, CO2 formation is inevitable on Co2C catalysts, especially in FTO process. So far, the mechanism of CO2 formation on Co2C surfaces is less understood. This work provides fundamental insights into CO2 formation on Co2C nanospheres and nanoprisms through computational and experimental study. DFT calculations demonstrate that: Co2C (101) and (020) surfaces exposed on Co2C nanoprisms are basically not active for water gas shift (WGS) reactions but the introduction of Na greatly promotes CO2 formation. CO2 is less favored on Co2C (1 1 1) surface which is dominant on Co2C nanospheres, however, the reverse WGS activities can be promoted with Na addition. The experimental results confirmed removing Na from Co2C can efficiently suppress WGS activity, thus reducing CO2 selectivity while the selectivity of light olefins retained. Though previous studies focused on Na addition to promote the yield of light olefins, our work indicates that Na also promotes undesired CO2 formation. Our results suggest that Na is crucial for active phase formation but not necessarily beneficial during the CO hydrogenation reactions.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Recent progresses in CO2 to syngas and high value-added products
    Shao, Bin
    Sun, Zheyi
    Zhang, Yun
    Pan, Fenghongkang
    Zhao, Kaiqing
    Hu, Jun
    Liu, Honglai
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (03): : 1136 - 1151
  • [22] Activation of CO2 and the subsequent conversion into value added chemicals
    Chatterjee, Chandrani
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [23] Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals
    Nielsen, Dennis U.
    Hu, Xin-Ming
    Daasbjerg, Kim
    Skrydstrup, Troels
    NATURE CATALYSIS, 2018, 1 (04): : 244 - 254
  • [24] Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals
    Dennis U. Nielsen
    Xin-Ming Hu
    Kim Daasbjerg
    Troels Skrydstrup
    Nature Catalysis, 2018, 1 : 244 - 254
  • [25] Photocatalytic conversion of CO2 into value-added and renewable fuels
    Yuan, Lan
    Xu, Yi-Jun
    APPLIED SURFACE SCIENCE, 2015, 342 : 154 - 167
  • [26] Direct and Oriented Conversion of CO2 into Value-Added Aromatics
    Wang, Yang
    Gao, Weizhe
    Kazumi, Shun
    Li, Hangjie
    Yang, Guohui
    Tsubaki, Noritatsu
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (20) : 5149 - 5153
  • [27] Heterogeneous catalytic CO2 conversion to value-added hydrocarbons
    Dorner, Robert W.
    Hardy, Dennis R.
    Williams, Frederick W.
    Willauer, Heather D.
    ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (07) : 884 - 890
  • [28] Abiotic-Biological Hybrid Systems for CO2 Conversion to Value-Added Chemicals and Fuels
    Li, Jiansheng
    Tian, Yao
    Zhou, Yinuo
    Zong, Yongchao
    Yang, Nan
    Zhang, Mai
    Guo, Zhiqi
    Song, Hao
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2020, 26 (04) : 237 - 247
  • [29] Catalytic Processes Combining CO2 and Alkenes into Value-Added Chemicals
    Schmitz, Marc
    Solmi, Matilde V.
    Leitner, Walter
    ORGANOMETALLICS FOR GREEN CATALYSIS, 2019, 63 : 17 - 38
  • [30] Pyridinylidenaminophosphines as Versatile Organocatalysts for CO2 Transformations into Value-Added Chemicals
    Lu, Shang-Yuan
    Chen, Wei
    Wen, Lang-Qi
    Zhou, Hui
    ASIAN JOURNAL OF ORGANIC CHEMISTRY, 2022, 11 (07)