Theoretical and experimental insights into CO2 formation on Co2C catalysts in syngas conversion to Value-Added chemicals

被引:5
|
作者
Zhang, Minhua [1 ,2 ,3 ]
Yu, Haipeng [1 ,2 ,3 ]
Sun, Yuzhe [1 ,2 ,3 ]
Yu, Yingzhe [1 ,2 ,3 ]
Chen, Yifei [1 ,2 ,3 ]
Wang, Lingtao [1 ,2 ,3 ]
机构
[1] Tianjin Univ, R&D Ctr Petrochem Technol, Key Lab Green Chem Technol Minist Educ, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Zhejiang Inst, Ningbo 315201, Zhejiang, Peoples R China
[3] Tianjin Univ, State Key Lab Engines, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Syngas conversion; CO; 2; Selectivity; Sodium promoter; WGS; FISCHER-TROPSCH SYNTHESIS; TOTAL-ENERGY CALCULATIONS; FINDING SADDLE-POINTS; ELASTIC BAND METHOD; GAS SHIFT REACTION; COBALT CARBIDE; LOWER OLEFINS; MORPHOLOGY CONTROL; ALCOHOLS SYNTHESIS; LIGHT OLEFINS;
D O I
10.1016/j.apsusc.2022.154379
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cobalt carbide (Co2C) has been discovered as the promising active phase for Fischer-Tropsch to olefins (FTO) process and higher alcohols synthesis (HAS) from syngas, in the form of nanoprisms and nanospheres, respectively. However, CO2 formation is inevitable on Co2C catalysts, especially in FTO process. So far, the mechanism of CO2 formation on Co2C surfaces is less understood. This work provides fundamental insights into CO2 formation on Co2C nanospheres and nanoprisms through computational and experimental study. DFT calculations demonstrate that: Co2C (101) and (020) surfaces exposed on Co2C nanoprisms are basically not active for water gas shift (WGS) reactions but the introduction of Na greatly promotes CO2 formation. CO2 is less favored on Co2C (1 1 1) surface which is dominant on Co2C nanospheres, however, the reverse WGS activities can be promoted with Na addition. The experimental results confirmed removing Na from Co2C can efficiently suppress WGS activity, thus reducing CO2 selectivity while the selectivity of light olefins retained. Though previous studies focused on Na addition to promote the yield of light olefins, our work indicates that Na also promotes undesired CO2 formation. Our results suggest that Na is crucial for active phase formation but not necessarily beneficial during the CO hydrogenation reactions.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Conversion of CO2 into value-added chemicals over solid catalysts
    Guo, Xinwen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [2] Catalytic conversion of CO2 into high value-added chemicals
    Guo, Xinwen
    Song, Chunshan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [3] CO2 Chemistry at Nankai Group: Catalytic Conversion of CO2 into Value-Added Chemicals
    He, Liang-Nian
    Yang, Zhen-Zhen
    Liu, An-Hua
    Gao, Jian
    ADVANCES IN CO2 CONVERSION AND UTILIZATION, 2010, 1056 : 77 - 101
  • [4] Photothermal Catalytic CO2 Conversion to Value-Added Chemicals: Progress and Prospects
    Li, Yicheng
    Pei, Xinya
    Wang, Zhou-jun
    Shi, Li
    Song, Hui
    Ye, Jinhua
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (47): : 17069 - 17097
  • [5] Efficient, small catalytic reactor for CO2 conversion to value-added chemicals
    Hawley, Kyle
    Junaedi, Christian
    Roychoudhury, Subir
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [6] Synergetic bimetallic catalysts: A remarkable platform for efficient conversion of CO2 to high value-added chemicals
    Hu, Jundie
    Yang, Fengyi
    Qu, Jiafu
    Cai, Yahui
    Yang, Xiaogang
    Li, Chang Ming
    JOURNAL OF ENERGY CHEMISTRY, 2023, 87 : 162 - 191
  • [7] Synergetic bimetallic catalysts: A remarkable platform for efficient conversion of CO2 to high value-added chemicals
    Jundie Hu
    Fengyi Yang
    Jiafu Qu
    Yahui Cai
    Xiaogang Yang
    Chang Ming Li
    Journal of Energy Chemistry, 2023, 87 (12) : 162 - 191
  • [8] Developing efficient heterogeneous catalysts for the conversion of CO2 to value-added products
    Raveendran, Shiju
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [9] Co-Conversion of CO2 and CH4 to High Value-Added Oxygenated Chemicals
    Hu, Lifang
    Wang, Jun
    Zhu, Jichao
    Zheng, Xianyun
    He, Xin
    He, Jie
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2022, 96 (14) : 3049 - 3069
  • [10] Co-Conversion of CO2 and CH4 to High Value-Added Oxygenated Chemicals
    Lifang Hu
    Jun Wang
    Jichao Zhu
    Xianyun Zheng
    Xin He
    Jie He
    Russian Journal of Physical Chemistry A, 2022, 96 : 3049 - 3069